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Abstract 

A thermoacoustic power converter consists of a thermoacoustic heat engine driving a linear 

alternator connected to a matched electric load. Accordingly, linear alternators are essential parts 

of thermoacoustic power converters. However, integration of a linear alternator in a 

thermoacoustic power converter is complicated since it requires acoustic matching with the 

thermoacoustic engine as well as electrical matching with the electric load connected to it and fast 

protection against piston over-stroking. In order to simplify the integration process, an 

experimental setup designed and built, in which the acoustic power generated by a thermoacoustic 

engine simulated by an acoustic driver. This setup provides a platform to test and evaluate the 

performance of a linear alternator in a controlled environment before integrated into 

thermoacoustic heat engines that allows identification and resolution of potential problems only 

related to linear alternators. A control circuit designed and built to protect the alternator’s piston 

against over-stroking. A non-linear electric load connected to the alternator to provide a stable 

operating point of the complete system. In this setup, instrumentation is used to monitor the main 

variables (input and output current, input and output volt, dynamic gas pressure at exit of acoustic 

driver and inlet of linear alternator, dynamic gas pressure in the enclosure volume of the acoustic 

driver and linear alternator, acoustic driver stroke, linear alternator stroke, air and coil 

temperatures). The setup allows use of different resonators to simulate the effects of different front 

volumes on the performance of linear alternators and allows alterations in the enclosure volumes 

housing the acoustic driver and/or alternator to control their resonance frequencies. Results show 

the performance of a given linear alternator under different operating frequencies, mean gas 

pressure, gas mixtures, input voltage, electrical resistance and zener break-down voltage. 
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Chapter 1 - Introduction 

Thermoacoustics deals with the rich interactions between thermodynamics and acoustics. 

It uses the combinations between thermal gradients and acoustic vibrations either to convert heat 

supplied at a certain temperature gradient into acoustic energy (which is one form of mechanical 

work) or to generate a refrigeration effect using input acoustic power.  

In any sound wave, there exist coupled pressure, displacement, density, and temperature 

oscillations. The pressure oscillations induce temperature oscillations which in turn cause heat 

transfer to (or from) nearby solid surfaces. The combination of these oscillations and the placement 

of enough solid walls at the proper position in the acoustic wave, close enough to the heated or 

cooled areas in the gas, produce a rich variety of thermoacoustic effects. 

The presence of a solid surface will cause a thermal boundary layer to form in the acoustic 

field. In this boundary layer, heat transfer takes place between the oscillating gas parcels and the 

solid surface, resulting in a positive transfer of heat from one end of the solid surface to the other, 

whose direction depends on whether the device is a heat engine or a refrigerator. The phenomenon 

of non-zero net heat transport that occurs in an acoustic field is designated the “thermoacoustic 

effect”. 

1.1 Thermoacoustic Devices 

There are two main types of thermoacoustics devices: thermoacoustic engines (TAE) and 

thermoacoustic refrigerators (TAR)  

In thermoacoustic engines (TAE), thermal energy converted into acoustic energy. The heat 

must be supplied at a temperature gradient, larger than a certain critical limit known as the critical 

temperature gradient. The temperature gradient is imposed on the thermoacoustic core (known as 

a stack in standing-wave engines or a regenerator in travelling-wave engines), which is a porous 

material sandwiched between two heat exchangers (hot and ambient). The heat applied to the hot 

heat exchanger and the heat rejection occurs at the cold heat exchanger, the heat transfer rates must 

be matched to sustain the imposed temperature gradient along the stack/regenerator to be larger 

than the critical temperature gradient.  

In thermoacoustic refrigerators (TAR), acoustic energy introduced into the system by 

acoustic drivers and used to move heat against a temperature gradient. This takes place via the 

interaction between the supplied acoustic wave and a solid surface placed at the proper position 

in the wave. 
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1.2 History of Thermoacoustics 

The first observation of thermoacoustics was in the mid of nineteenth century. 

Glassblowers noticed that when a high temperature glass bulb connected to a relatively cooler bulb 

a tone would be emitted [1]. This was known as a Soundhauss tube after a German who 

quantitatively studied the sounds. By the end of the 1800’s, Lord Rayleigh found that these tones 

(pressure oscillations) take place when heat is added to gases at high density and taken from it at 

low density [2].  

Figure 1.1 shows one of the very first power converters that presented by a patent [3]  to 

Bell Telephone Laboratories around 1950. A heat from an open flame converted to acoustic power 

with a thermoacoustic engine based on the idea of a Soundhauss tube. This generated acoustic 

power converted into electricity by cycling an acoustical-to-electrical transducer with an efficiency 

less than 10%. This engine considered as a breakthrough in the thermoacoustic field as no moving 

parts were required to convert heat energy into electrical energy; hence, it was not expensive to 

build besides being reliable. 

 

Figure 1.1: One of the very first TAPC [3] 

In 1979, it was found that enhancement for the thermoacoustic engines efficiencies could 

be achieved if the acoustic wave produced was forced to undergo phasing similar to the inherently 

reversible and thus highly thermally efficient Stirling thermodynamic cycle [3]. 

In 1998, a hybrid thermoacoustic-Stirling engine was demonstrated but it suffered from 

some inefficiencies due to heat and viscous losses [4]. These problems mainly solved a year later 

to result in the first hybrid thermoacoustic-Stirling engine converting 30 % [5] of the input heat to 

acoustic power with no moving parts, which was 50 % better than the most efficient of the non-

hybrid thermoacoustic engines. This engine subjected to some updates and modifications to reach 

an efficiency of 38 % [6].  
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In 2003, a hybrid thermoacoustic-Stirling engine was built but this time it was connected 

to two linear alternators to convert acoustic energy to electric energy [7]. Figure 1.2 shows the 

engine that successfully generated 57 Watts with 30 % heat o acoustic efficiency and 17.8 % 

thermal to electric efficiency.  

  

Figure 1.2: Los Alamos National Lab traveling-wave thermoacoustic electric generator [7] 

1.3 Modes of Operation 

There are two categories of thermoacoustic engines classified by the oscillating wave type: 

Standing-wave thermoacoustic engines operate on a cycle similar to that of Brayton cycle. 

Travelling-wave thermoacoustic engine operate on a thermodynamic cycle similar to that of the 

Stirling cycle.  

1.3.1 Standing Wave Engines 

Standing-wave thermoacoustic engines operate on a cycle similar to that of Brayton 

cycle. 

1.3.1.1 Standing Wave Engines Components 

As shown in Figure 1.3, the standing-wave engine consists of a long tube (resonator) closed 

from one end and a linear alternator fitted to the other end. A thermoacoustic element (stack) 

inserted inside the resonator and two heat exchangers fitted on the both sides of the stack. One 

of the main advantages of these engines is the simple structure.  
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Figure 1.3: Schematic for standing-wave thermoacoustic engine [8]. The arrow shows the direction 

of the acoustic power 

1.3.1.2 Standing Wave Engines Operation 

The thermodynamic processes are adiabatic compression, constant volume heat addition, 

adiabatic expansion and constant volume heat rejection, as shown in the different diagrams in 

Figure 1.4.  

   

Figure 1.4:Relationships between pressure, parcel volume , temperature and axial location of the parcel in 

standing-wave engine [9] 

In standing-wave thermoacoustic engines, the temperature of the gas parcel is always 

different from the temperature of solid plates. A stack used to satisfy this condition. The spacing 

between the stack cells should be 3-5 times the thermal penetration depth [10]. A higher value 

would cause large amounts of the gas to experience adiabatic compression and expansion with 

no thermoacoustic interactions with the solid walls and thus would decrease the output power 

and the conversion efficiency. A lower value would cause excessive pressure drop across the 

stack and large viscous dissipation losses.  
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Due to the pressure oscillation in the flow there is a temperature oscillation as well. This 

temperature oscillation creates an adiabatic temperature gradient. Once the temperature gradient 

across the stack becomes greater than the adiabatic temperature gradient, a sound wave 

generated. This implies that the acoustic wave is not generated unless the applied temperature 

gradient exceeds a certain critical temperature gradient.  

The generated sound wave has a phase shift close to 90 degrees between the pressure and 

the velocity waves as shown in Figure 1.5. A standing-wave engine with a perfect stack will not 

deliver acoustic power because pressure and velocity are exactly 90 degrees out of phase. Thus, 

standing-wave engine operates only when there is less than 90 degrees between dynamic 

pressure and velocity. This condition achieved with imperfect heat exchange between the solid 

stack wall and the working gas, hence the term stack rather than regenerator.  

 

Figure 1.5: Dynamic pressure and gas parcel velocity waveforms in standing-wave engines [2]. 

The dynamic pressure and velocity are in nearly 90 degrees out of phase through the stack 

 

Inside the stack, the gas pressure oscillations are intermediate between perfectly isothermal 

at the solid–gas interface and nearly adiabatic at distances larger than the thermal penetration 

depth. This imperfect thermal contact between the gas and the solid introduces a phase shift 

between the pressure and temperature of the gas over a distance within a few times of the thermal 

penetration depth. The developed phase shift provides a simple and natural mechanism to produce 

the required phasing in standing-wave engines. Heat exchange occurs only at the peaks of the gas 

parcels displacement that causes an inherent irreversibility and thus lower efficiency in standing 

wave thermoacoustic engines.  
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This imperfect heat transfer introduces a slight phase shift and hence the required less than 

90 degree condition needed for the operation is achieved. Standing-wave engines operate typically 

at over 85 degrees of phase shift between dynamic pressure and velocity, which makes a high 

reactive (out of phase) pressure component. This reactive component is resolved either by a long 

resonant pipe that is expensive, or by a high mass linear alternator (LA) [11].  

However, to obtain a resonant high-mass linear alternator requires a large spring. A high-

power linear alternator requires a large coil excursion and the combination of a large spring and 

large excursion is difficult to achieve [12]. These factors limit the use of standing-wave 

thermoacoustic engines to low power.  

1.3.1.3 Standing Wave Engines Performance Estimation 

For Standing-wave engines, a good estimate of the order of magnitude of the acoustic 

power flowing through the regenerator is given by [10]: 

                               ~ (
1

8
) ∗ |p1| ∗ |U1|~ (

|p1|

Pm
) ∗ (

|u1|

a
) ∗ (

Pm∗a∗A

8
)   (1) 

 

1.3.2 Travelling Wave Engines 

Travelling-wave thermoacoustic engine operate on a thermodynamic cycle similar to that 

of the Stirling cycle. 

1.3.2.1 Travelling Wave Engines Types and Components 

The travelling-wave engine consists of a torus attached with the resonator, as shown in 

Figure 1.6 and Figure 1.7. A thermoacoustic element (regenerator) inserted inside the resonator 

and two heat exchangers fitted on the both sides of the regenerator. One extra heat exchanger 

used to remove the additional heat from the working fluid. The regenerator acts as a velocity 

amplifier and adds power to the wave. The wave passes to the linear alternator that then extracts 

power.  
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Figure 1.6:Various traveling wave engine designs [9] 

 

 

Figure 1.7: Schematic for travelling-wave thermoacoustic engine [6] 

1.3.2.2 Travelling Wave Engines Operation 

The thermodynamic processes are isothermal compression, constant volume heat addition, 

isothermal expansion and constant volume heat rejection, as shown in the diagrams of Figure 1.8. 
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Figure 1.8: Relationships between pressure, parcel volume, temperature and axial location in 

travelling-wave engine. [9] 

To simulate the Stirling cycle, the temperature of the gas parcel has to be the same as the 

temperature of solid plates. In order to satisfy this condition a regenerator is utilized. The spacing 

between the plates of regenerator must be less than the thermal penetration depth. In these 

engines, the dynamic pressure and velocity are in phase through the regenerator as shown in 

Figure 1.9.  

The small pores in the regenerator necessitates a small gas parcel velocity inside the 

regenerator to avoid large viscous dissipation. Hence, for a travelling-wave engine to perform 

efficiently and to produce large power density, it is critical to increase the magnitude of the 

pressure oscillations and reduce the magnitude of the velocity oscillations (i.e., increase the 

acoustic impedance). This should be done while maintaining the magnitude of their product (i.e., 

the acoustic power). 
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Figure 1.9: Dynamic pressure and gas parcel velocity waveforms in travelling-wave engines [2]. 

The dynamic pressure and velocity are  nearly in phase through the regenerator 

1.3.2.3 Traveling Wave Engines Performance Estimation 

For travelling-wave engines, a good estimate of the order of magnitude of the acoustic 

power flowing through the regenerator is given by [10]: 

                   ~ (
1

2
) ∗ |p1| ∗ |U1|~ (

|p1|

Pm
) ∗ (

|u1|

a
) ∗ (

Pm∗a∗A

2
)      (2) 

1.4 History of Thermoacoustic Heat Engines 

Linear alternators are the parts in TAPC that are responsible for converting the acoustic 

power generated by the thermoacoustic engine into electric power. Similar to them are the acoustic 

drivers, which convert electric energy into acoustic energy. 

The last decade had witnessed significant development in the generation of electric power 

from different sources of heat energy through acoustic power. In 2004, thermoacoustic heat engine 

was constructed that generated 57 Watts of electricity at 17.8 % efficiency. The engine operated 

using helium at 52 bar with the hot heat exchanger at 900 K and the cold heat exchanger at 353 K 

[7].  

Later in 2006, a thermoacoustic engine was built and operated  that could generate 70 Watts 

of AC electricity but with overall conversion efficiency 11.4 % due to the losses in the hot heat 

exchangers. this engine operated using helium 30 bar with hot and cold heat exchangers 950 K and 

320 K respectively [9]. 

After that in 2011, a thermoacoustic engine was designed and tested that have relatively 

low conversion efficiency of 7 % due to excessive streaming in the engine. On the other hand, the 
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engine was able to generate 100 Watts of electrical power. It used helium at 33.5 bar mean pressure 

and operated between 873 K hot side temperature and 373 K cold side temperature [13]. 

In 2012, another thermoacoustic heat engine was operated using helium at 35 bar and over 

all conversion efficiency of 15 % was able to produce 200 Watts of AC electric power [14]. Finally, 

in 2014, Qnergy announced that it was able to manufacture a thermoacoustic Stirling heat engine 

that could generate 1 kW of electrical power during a field test completed at its test facility in 

Ogden, Utah [15]. 

1.5 Advantages and Challenges of Thermoacoustic Heat Engines 

In addition to their design simplicity, Thermoacoustic heat engines manufactured from 

standard materials that are available in commercial quantities. This essentially reduces the initial 

cost of such systems and makes them attractive for use in rural areas remote from electricity grids. 

Another significant advantage is that these systems operate with almost no mechanical moving 

parts, significantly reducing the cost of maintenance and increasing their operational life. The only 

moving parts are the acoustic drivers/linear alternators that used to supply the acoustic power in 

thermoacoustic refrigerators or to extract it in the case of thermoacoustic engines. These explained 

in more details later in this chapter. 

Additionally, these devices utilize environmentally friendly working gases, with no ozone 

depletion or greenhouse effects. Moreover, a thermoacoustic engine is an external heat engine, in 

which heat supplied outside the main core of the engine, which facilitates the engine’s integration 

with solar or waste heat sources, making this technology very attractive for solar/waste heat energy 

applications.  

In addition, a thermoacoustic engine converts heat into mechanical power without 

involving combustion processes or emissions to the environment.  

On the other side, thermoacoustic engines still face some challenges, including:  

- The device has low power density. 

- The linear alternators that are commercially available to convert acoustic energy into 

electricity currently have low efficiencies compared to rotary electric generators, and only 

expensive specially-made alternators can give acceptable performance. 

- Efficient heat exchanging processes are critical to maintain the power conversion process 

in TAE. The hot heat exchanger is required to transfer heat to the stack/regenerator and the 

cold heat exchanger, located on the other side of the stack, has to remove heat at a rate high 

enough in order to sustain the temperature gradient across the stack/regenerator. However, 

the heat exchangers cause large blockage to the wave and the oscillating nature of the flow 
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limits the use of already-developed correlations that are applicable under steady-state 

conditions.  

- The acoustic wave that is self-generated inside the engine at large pressure ratio suffer 

many kinds of non-linearity like turbulence (causes energy dissipation due to viscous 

effects), harmonic generation of different frequencies (carries acoustic power in 

frequencies other than the fundamental frequency and those are not useful to the load). 

1.6 Principle of Operation of Linear Alternators  

The principle of operation is based on the Lorentz force which is induced when relative 

motion occurs between an electrical conductor, through which a current flows and a magnetic 

field. Lorentz force on the coil given by: 

                                                F = B L I                                      (3) 

1.6.1 Types of Linear Alternators 

Linear alternators can be of two main types, i.e. moving coil and moving magnet. The moving 

magnet type is most common now in thermoacoustic power converters. Moving coil technology 

commonly used only for very small power sizes or for loudspeaker construction, where linearity 

is preferred over efficiency because they suffer from reliability problems caused by flexible 

conductor carrying current from the moving coil, large air gaps, reduced efficiency and increased 

mass of the moving coil. 

The following points list the advantages and limitations of the moving-magnet linear 

alternators, with respect to moving-coil type: 

- The magnetic flux generated without external power, thus reducing energy costs, and 

easing the heat dissipation. Additionally, the flux density can be high and accurately 

controlled. 

- The windings are bonded directly to the yoke giving rise to high reliability and compact 

structure. 

- The oscillating frequency and amplitude of the moving magnet linear actuator can easily 

controlled. 

- Small size and weight, reasonable power handling capacity, reasonable stroke limits (peak-

to-peak values in the range of 10 – 20 mm). 

- Demonstrated high acoustic-to-electric transduction efficiency.  
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- Long maintenance-free lifetimes. Some systems have been in continuous operation for over 

8 years. Calculated theoretical mean time between failures (per military standard method 

MIL-STD217F) is 129,760 hours [16].  

- There are no wearing parts in the alternator, no traditional bearings, and no sliding seals. 

Operation without lubrication is possible thanks to a set of flexure bearing.  A flexure 

bearing is composed of a stack of several spiral-cut circular metallic plates with a piston 

attached to its center. The stack of plates forms a “bearing” that is extremely stiff with 

respect to radial, twisting, or rocking motion of the piston and is relatively soft in the axial 

direction. This allows the piston to move in its cylinder with a radial clearance as small as 

10 µm. The stiff flexure bearing keeps the piston from touching the cylinder and the small 

clearance effectively forms a non-wearing seal that requires no lubrication. The flexures 

designed to operate at very low stress, and each type of flexure subjected to a test to confirm 

its long-life potential (through accelerated testing at increasing levels of stress). 

- One of the main complications in linear alternators is the need for tight control of the length 

of the stroke of the piston assembly, to avoid having the piston contact the cylinder head 

at its furthermost outer position. 

1.6.2 Linear Alternators Matching 

Two types of matching must be achieved simultaneously in order to allow the linear 

alternator to work at or near its maximum efficiency and be able to reach its rated electric power 

output. These types of matching are acoustic matching and load matching. 

1.6.2.1 Acoustic Matching  

The matching conditions between an acoustic driver and an acoustic load in an acoustic 

resonator was summarized. These conditions must be satisfied simultaneously at full rated power 

and they are:  

- The acoustic driver must be operated at the design frequency of the acoustic load. 

- The acoustic driver must operate at its resonant frequency. 

- The acoustic driver must deliver the proper acoustic power to the acoustic load. 

- The values of the pressure and volume velocities (i.e., volumetric flow rate) amplitudes 

and phases must be matched to a design point of the acoustic load.  

- The acoustic driver must operate at the full design stroke when operated at full rated power.  
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The last condition implies that if full acoustic power delivered at less than the rated stroke, 

excessive driver current will be required. On the other hand, if full rated power delivered at more 

than the rated stroke, the machine will be stroke-limited and never achieve its rated capacity.  

Similarly, operating with full stroke at less than the rated power means carrying the full 

overhead of motion losses incurred at rated power, while operating at only a fraction of that power. 

This requires complete understanding of how to control the stroke. Further explanation is that 

depending on which parameters considered first in the design stage, it is possible in an imperfect 

design that the design frequency for the acoustic load will not match the resonant frequency of the 

complete system, or alternatively full acoustic power will not be delivered at full rated stroke [17]. 

1.6.2.2 Load Matching  

The electric load controls the stroke of the linear alternator and the acoustic-to-electric 

conversion efficiency of the linear alternator. Moreover, the combined system made of the 

thermoacoustic engine, linear alternator and load must have a single intersection point between the 

power produced by the engine versus stroke and the power absorbed by the load versus stroke. The 

power produced by the thermoacoustic engine running on a Stirling cycle is a quadratic function 

with voltage (and hence approximately quadratic with stroke). A load made of simple resistors has 

its power absorption also quadratic with voltage (and therefore also with stroke) and thus no stable 

intersection point exists between the alternator and a simple resistive load since both have 

quadratic dependence with voltage and stroke.  

 If the combined system is perfectly balanced, then it will run in a stable mode. However, a 

perfect balance is not possible or sustainable, especially in the start-up and shutdown operation 

modes of the combined system.  

 One of the methods that can be used to resolve this issue is to use a non-linear load, in 

which the absorbed power is not in proportion to the square of the voltage. Systems built with 

purely resistive loads suffered from instability of operation and inability to properly test the 

thermoacoustic engine and the linear alternator [9].  

It should be noted that non-linear loads are needed only during initial testing in laboratories 

because once the thermoacoustic engine and the linear alternator are connected to the grid, the 

output voltage (and hence the stroke) are imposed by the grid and no special loads are needed then.  

Non-linear loads can be made using back-to-back zener diodes, as suggested by [7], or by 

using an electronic load device, that allows constant voltage or constant current operations. The 

experimental setup allows the operator to adjust the operating conditions -as shown in chapter 2- 

(gas mixture composition, mean gas pressure, input acoustic power, operating frequency and load 
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value) in order to satisfy both proper acoustic matching between the linear alternator and the input 

acoustic power as well as proper matching with the load. Which should translate into stable 

operation with high conversion efficiency at the desired stroke.  

1.7 Scope of This Work 

The purpose of this work is to test a linear alternator in a controlled environment to 

integrate it into a thermoacoustic heat engine. The linear alternator is driven by an acoustic driver 

rather than a thermoacoustic engine to make sure that the experiment is well controlled and the 

data can reproducible. This allows us to avoid the effect of streaming that are associated with the 

use of a thermoacoustic engine to drive the alternator. The frequency and intensity of the supplied 

acoustic power can be easily controlled via a function generator and a power amplifier.  

DeltaEC used to provide an initial acoustic design of the system to make sure that the 

acoustic power will be transferred efficiently from the acoustic driver to the linear alternator for 

the suggested geometry.  

The built setup is built to include the necessary controls (e.g., stroke control circuit) needed 

to protect the alternator during the test and the necessary instrumentation needed evaluate its 

performance. Although the current setup can operate in a stable manner using linear loads (e.g., 

simple resistors), the real application in thermoacoustic power converters requires non-linear 

loads. Accordingly, the used experimental setup uses non-linear loads.  
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Chapter 2 - Experimental Setup and Procedure 

The main purpose of the experimental setup is to provide a flexible platform to test linear 

alternators under different operating conditions in a controlled environment with all potential 

issues related to thermoacoustic engines decoupled. To do such decoupling, we use an acoustic 

driver to drive the linear alternator.  

2.1 DeltaEC 

Design Environment for Low-Amplitude Thermoacoustic Energy Conversion (DeltaEC) 

[18], is a computer program that solves one-dimensional wave equation in gases to determine the 

spatial dependence of the acoustic pressure and velocity in thermoacoustic devices. It contains 

different types of segments (purely acoustic, lumped impedances, electro-acoustic transducers, 

thermoacoustic stacks and thermoacoustic heat exchangers). 

In this work, DeltaEC has been used in order to make a preliminary acoustic design for the 

experimental setup 

The DeltaEC code consists of different segments that are connected in series to each other 

to simulate the system built. Appendix A and Appendix B presents details of each segment and 

the full DeltaEC code. 

The main purposes of the DeltaEC simulation are to make sure that the suggested geometry 

of the system (resonator length and enclosures dimensions) will allow efficient transfer of acoustic 

power from the acoustic driver into the linear alternator and to identify a starting value for the 

operating frequency that will be used in the experimental work as a starting point. Table 2.1 show 

the main system dimensions used in the DeltaEC simulation and then in the experimental setup. 

While, Figure 2.1 shows a schematic of the preliminary design of the experimental setup. 

Table 2.1: System main dimensions 

Parameter Value 

Resonator length, mm 50 

Resonator diameter, mm 50 

Acoustic driver enclosure diameter, mm 100 

Acoustic driver enclosure length, mm 130 

Linear alternator enclosure diameter, mm 100 

Linear alternator enclosure length, mm 130 
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Figure 2.1: System schematic from DeltaEC 

2.2 Experimental Setup 

The setup designed in a modular form to allow ease of change of different components to 

facilitate studying the effect of different parameters (e.g., front and back volumes) on the behavior 

of the linear alternator. A schematic of the setup shown in Figure 2.2 and the instrumentations used 

are listed in Table 2.2, while Figure 2.3 shows a digital image of the setup.  

 

Figure 2.2: Schematic showing the linear alternator under test and the accessories and instrumentation used. 
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Figure 2.3: Digital image for the experimental setup 

 

 

Table 2.2: Experimental setup instrumentation list 

Item No. Item description 

1 Input data measuring oscilloscope  

2 Function generator 

3 Power amplifier  

4 DC amplifier  

5 Data acquisition card  

6 Stroke control circuit  

7 LVDT signal conditioner (acoustic driver) 

8 LVDT signal conditioner (linear alternator) 

9 DC amplifier  

10 Output data measuring oscilloscope  

11 Zener diode set  

12 Rheostat  

13 LVDTs power supply  
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2.3 Setup Components: 

2.3.1 Resonator 

The resonator (AKA front volume) is responsible for delivering the acoustic energy from 

the source of acoustic energy typically a thermoacoustic engine (an acoustic driver in this work) 

to the linear alternator. The inner surface of the resonator must be of very low surface roughness. 

This is achieved by using polished stainless steel or polished galvanized steel.  

The resonator has two flanges to allow assembly with the enclosure volumes carrying the 

acoustic driver and the linear alternator. In addition to, it has the following instrumentation ports: 

- One gas inlet/outlet port (1/2-inch threaded).  

- One thermocouple (1/2-inch) feed through to connect a type-E thermocouple to measure 

the mean gas temperature inside the resonator. 

- Two through openings with M5 thread used to connect dynamic pressure microphones  

The round surface of the resonator is flattened using a vertical milling machine at the 

interface of these ports in order to enhance the sealing of the system and to avoid any gas leakage. 

Three resonators of different lengths (5 cm, 15 cm and 25 cm) are manufactured to allow 

studying the effects of different front volumes on the performance of the linear alternators. These 

lengths are measured from the face of the piston of the acoustic driver to that of the piston of the 

linear alternator.  

A digital image of the resonator is shown in Figure 2.4, while Appendix C shows the 

mechanical drawings of all three resonators.  

(Gas inlet/
outlet port)

  

Figure 2.4: Left: Three used resonators. Right: flange of one of the resonators 

 



www.manaraa.com
19 

 

2.3.2 Enclosure Volume 

The acoustic driver and alternator are housed inside enclosures (AKA back volumes). 

Enlarging the enclosure volume reduces the pressure wave in the backspace, which in turn reduces 

the thermal relaxation loss and the seal loss causing an improvement in the conversion efficiency. 

On the other hand, the increase in volume decreases the TAPC’s power density. So, the volume of 

the enclosure should be optimized to achieve both high conversion efficiency and high power 

density. Figure 2.5 shows a digital image of the enclosure volumes .Appendix C presents the 

mechanical drawings.  

  

Figure 2.5: Top: The alternator volumes used to house the acoustic driver and the linear alternator. 

Bottom: Flange of one of the alternators 

The enclosure volume has two flanges. The first one to connect it with the resonator. The other 

one contain the feed in/out ports as following:  

- Electric power input/output feed through (1/2 inch). 

- Thermocouple (type E, diameter 810 um) used to measure the mean gas temperature 

inside the enclosure volume. 

- LVDT port to mount the LVDT probe. The LVDT measures the piston displacement.  

- Dynamic pressure microphone (Meggitt, Model 8530C-500M5) used to measure the gas 

dynamic pressure wave at the back of the piston. This is used, in conjunction with the 

LVDT signal measuring the piston displacement, to estimate the alternator-space thermal 

(hysteresis) losses.   

- Mean pressure equalization port used to equalize the mean pressure between the enclosure 

volume and the resonator during system charging and discharging.  
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Figure 2.6 shows a digital image of one of the enclosure volume flanges, while the 

mechanical drawings presented in Appendix C.  

 

Figure 2.6: Left: outer side of enclosure flange. Right: Inner side of the flange 

2.3.3 Hydrostatic test 

The mechanical design of the resonator and enclosures followed the ASME standards [19]. 

The resonator and the enclosures are made of steel and they are designed to withstand operation at 

40 bar and are tested hydro-statically (by the manufacturer) at 60 bar.  

2.3.4 Acoustic Driver and Linear Alternator 

The experimental setup contains an acoustic driver (model 1S102D, supplied by Q-drive). 

The acoustic driver in this setup is responsible for generating the acoustic power at the required 

frequency to simulate the acoustic power resulting from a thermoacoustic engine. This acoustic 

power drives a linear alternator (model 1S102D, supplied by Q-drive) to generate electricity. 

Table 2.3 presents the specifications for both of them. A digital image shown in Figure 2.7. 
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Table 2.3: Acoustic driver and liner alternator specifications [20] 

Parameter Acoustic Driver Linear Alternator 

Electric resistance,  6.70 6.72 

Inductance, mH 86.4 84.1 

Transduction coefficient BL product,  N/m2  47.69 48.01 

Moving mass, kg 0.4922 0.478 

Intrinsic stiffness, kN/m 30.49 30.94 

Damping, Rm, N.S/m 4.69 4.55 

Free decay frequency, Hz 40.51 40.48 

Maximum displacement, mm 6.23 6.14 

Piston diameter, mm 50.8 50.8 

Piston area, m2 2.03E-3 2.03E-3 

Total weight, kg  1.6 1.6 

Ambient operating temperature, °C 0-32 0-32 

Nominal stroke, mm 10 10 

Nominal power, W 125 100 

Voltage at nominal power, V 100 (single phase) 100 (single phase) 

Max. operating current, A 2 2 

Fuse, A (fast-acting) 2.25 -- 

 

   

Figure 2.7: Three views for the used acoustic driver / Linear alternator 

In order to operate the experimental setup at different frequencies and different values of 

input electric power a function generator (Tektronix Model AFG 3021B, single channel, generates 

signals at a rate of 250 MS/s) is used to energize the acoustic driver with a sinusoidal input wave. 

The generated wave amplified by a power amplifier (Bruel and Kjaer, Model 2734, 650 W) to the 

required value of power to be fed to the acoustic driver. This value controlled by the required 

intensity of the acoustic power.  

A fast-acting fuse of 2.25 A (Model: BK/AGC-2.25-R, Supplied by DIGI-KEY) used to 

protect the acoustic driver against excessive current withdrawal. This value is within the limit 

recommended by the supplier of the acoustic driver (a maximum of 2.5 A). Figure 2.8 presents a 

digital image of the function generator and power amplifier used in this work. 
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Figure 2.8: Top: Function generator. Bottom: Power amplifier 

The temperature of the surface enclosing the motor should not exceed 45 C. A 

thermocouple is used to monitor this temperature. Forced convection or water-cooling in tubes 

wrapped around the housing can be used to avoid overheating if the input current results in higher 

surface temperature. Special care must be taken that the input current must not exceed 2A (RMS) 

in all cases. The ambient temperature should not exceed 35C, and the relative humidity should not 

exceed 95% [20]. 

2.3.5 Stroke-Control Circuit 

The control logic used to protect against piston’s over-stroking on the acoustic driver 

and/or linear alternator is shown in Figure 2.9. The stroke of each of the acoustic driver and the 

alternator is measured using LVDT’s. Each LVDT signal is fed into a precision rectifier in order 

to get the absolute value of the LVDT signal, to provide over-stroking protection in either positive 

or negative directions.  The output signal is fed into an analog comparator (LM324 Op-Amp).Such 

a signal it is compared against a preset voltage that corresponds to the maximum stroke limit where 

the result of the analog comparison takes a control action to prevent over-stroking.  
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Figure 2.9: Control logic used to protect against over-stroking in the linear 

If the alternator stroke exceeds the set point, two control actions occur: the input electric 

power supply to the acoustic driver is turned-off via a normally closed solid-state relay and a stall 

circuit is introduced parallel to the electric load via a normally open solid-state relay. The later 

provides a fast enough protection in TAPC’s since the linear alternator will continue to operate for 

a significant time after the source of heat is turned-off.  The stall circuit designed in such a way 

that it has a resistance lower than that of the load and a power rating capable of dissipating the full-

generated electric power. The introduction of the stall circuit in parallel to the load reduces the 

overall resistance seen by the load causing the current generated by the linear alternator to increase 

and the voltage generated by the alternator to decrease, which forces the alternator stroke to 

decrease. In this work, the stall circuit is simply a two Ω 100 W resistance.  

 Additionally, if the driver stroke exceeds the set point, the input electric power is turned-

off via the same normally closed solid-state relay. This operation is made using an analog OR gate. 

Once any of these control actions is initiated, it remains in effect until a manual reset is made by a 

human action, to avoid further operation until the cause of over-stroking is identified and resolved. 

Figure 2.10 and Appendix F shows the details of the circuit used for the control process. 
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Figure 2.10: PCB of the stroke control circuit 

2.3.6 Load Circuit 

The setup allows the use and the control of different electric loads to study the matching 

between the linear alternator and the electric load. The electric load affects the stroke of the linear 

alternator and the acoustic-to-electric conversion efficiency of the linear alternator.  

The combined system made of the thermoacoustic engine, linear alternator and electric load 

must have a single intersection point between the curve of the produced power by the engine versus 

stroke and the curve of power absorbed by the load versus stroke. The power produced by the 

thermoacoustic engine running on a Stirling cycle is a quadratic function with voltage (and hence 

approximately quadratic with stroke). A load made of simple resistors has its power absorption 

also quadratic with voltage (and therefore also with stroke) and thus no stable intersection point 

exists between the alternator and a simple resistive load curves since both have quadratic 

dependence with voltage and stroke.  

One of the methods that can be used to resolve this issue is to use a non-linear load that is a 

load that does not draw a sinusoidal current when a sinusoidal voltage is fed to it. For example, 

non-power factor corrected Switched Mode Power Supplies used in computers, audio video 

equipment, battery chargers, etc. 
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Systems built with purely resistive loads, which is a load that draws sinusoidal current when a 

sinusoidal voltage is fed to it. For example incandescent lamp, heater, etc. Suffered from instability 

of operation and inability to properly test the thermoacoustic engine and the linear alternator [9]. 

It should be noted that non-linear loads are needed only during initial testing in laboratories 

because once the thermoacoustic engine and the linear alternator are connected to the grid, the 

output voltage (and hence the stroke) are imposed by the grid and no special loads are needed then. 

Non-linear loads can be made using back-to-back zener diodes [7], or by using an electronic 

load device, that allows constant voltage or constant current operations. 

The non-linear electric load used in this work consists of a set of back-to-back zener diodes of 

different breakdown voltages (6, 12, 15 and 20 V) connected in series to a high-power rheostat 

(Ohmite Wirewound Power Rheostats, Model L 150 Watt). Figure 2.11 and Figure 2.12 below show 

the rheostat and the zeners that have been used to test the effect of the breakdown voltage of the 

zener on the behavior of the linear alternator. Table 2.4 shows the specifications of the zeners used. 

  

Figure 2.11: Left: Set of zeners available in the lab. Right: back-to-back connection of the 

zeners 

 

Figure 2.12:connection of the zeners in series with the rheostat 
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Table 2.4: Specifications of the AC zeners diodes used in the experiments 

Item No. Break-down voltage Rated power Supplier Serial No. 

1 3 V 5 W RS 1N5334B 

2 6 V 5 W RS 1N5341B 

3 12 V 5 W RS 1N5349B 

4 15 V 5 W RS 1N5352B 

5 20 V 5 W RS 1N5357B 

2.4 Instrumentation 

2.4.1 Mean Pressure 

The mean gas pressure measured using a Bourdon-tube gauge. During gas filling and 

discharge, vacuuming used to remove the old gas mixture before introducing the new mixture. 

Thus, a vacuum pressure gage is also used.  

All gauges are isolated from the resonator via stain-less steel valves in order to protect 

them from exposure to acoustic oscillations and to prevent acoustic power from flowing out of the 

system in the direction of the gauges and corrupting the data. Figure 2.13 shows a digital image of 

the pressure and vacuum gages and their control valves.  

 

Figure 2.13: Gauges and control valves used in the experiment 

2.4.2 Working Gases 

In order to prepare the required gas mixture for each experiment, two high-pressure gas 

cylinders used for this purpose: a helium high-pressure gas cylinder (purity of 99.9%, DOT 

3AA2265) and an argon high-pressure gas cylinder (99% purity, DOT 3AA2265). Each cylinder 

connected to the setup with its own regulator to control the supply pressure to the system.  
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2.4.3 Mean Gas Temperature 

In order to capture any effect of the input acoustic power and\or frequency on the mean 

temperature of the gas mixture. One thermocouple (type E, 810-μm in diameter and supplied by 

Omega Engineering) is introduced in the middle of the resonator using a ½” feed-through that is 

connected to the data acquisition card in order to monitor any temperature changes. 

2.4.4 Coil Temperature 

In order to protect the coil of the acoustic driver and the linear alternator from overheating, 

two thermocouples (type E, 810-μm in diameter and supplied by Omega Engineering) are used to 

monitor the temperature of the working gas very close to each coil. All thermo-couples are 

connected to the setup using feed-through and are then connected to data acquisition.  

2.4.5 Dynamic Pressure 

Measurement of dynamic pressure waves in two different points in the system with 

reasonable accuracy provides information about the acoustic power flux in this region. Hence, it 

can provide the value of the acoustic power at the acoustic driver exit and at the linear alternator 

input. In addition, there is a pressure microphone in the back of each enclosure volume in order to 

measure the value of the dynamic pressure behind the acoustic driver and the linear alternator in 

order to calculate the alternator-space thermal losses (hysteresis) in the volume of gas behind the 

pistons. 

 Four piezo-resistive pressure microphones (Meggitt, Model 8530C-500M5, range 0-500 

psi absolute and individually calibrated by the supplier) used to measure the dynamic pressure in 

the mentioned locations. They operate by sensing the change in electric resistance caused by the 

change in dynamic pressure. Hence, they need a Wheat-Stone bridge arrangement. The four legs 

of the bridges are on the sensor already but a signal conditioner that provides excitation to the 

bridge and provides gain to the signal is needed. In this work, Meggitt amplifier model 136 (three-

channels, 200 kHz bandwidth, and programmable-gain) is used for this purpose. When placing the 

order of the model 136 amplifier, it comes with a built-in low-pass filter with a default cut-off 

frequency at 10 kHz (plus/minus 12 %). Figure 2.14 presents a digital image the dynamic pressure 

microphone and the amplifier used.  
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Figure 2.14: Left: Dynamic pressure microphone. Right: DC amplifier 

Some of the main factors that should be considered during the selection of the dynamic 

pressure microphones are: 

1. Range: Different models have different ranges. For instance, item 8530B-500 operates up 

to 500 Psi (34 bar absolute) while item 8530C-50 works up to 50 Psi (3.4 bar absolute). 

The proper range depends also on the mode of operation (absolute/gage operation). 

2. Absolute/gage pressure: Some products have absolute pressure outputs (e.g., 8530B-500) 

and others have gage pressure outputs (e.g., Model 8510B-2). The absolute sensors are 

better when using gases other than air, because they will not be damaged when subjected 

to vacuum during the gas refill and the associated vacuuming.  

Some of the main factors that should be considered during the installation of the dynamic 

pressure microphones are: 

1. Before the pressure microphone is installed, the round surface is flattened using a vertical 

milling machine and an O-ring is used to prevent leakage.  

2. The proper thread, as instructed by the supplier manual, is made into the resonator wall 

(through hole). 

3. The microphones are installed at certain angles facing the floor and/or away from the 

operator, to avoid eye injuries in case they are impulsively disconnected from the setup at 

high operating pressures.  

2.4.6 Linear Variable Differential Transducers (LVDT’s) 

One of the main variables that should be measured and controlled in this experimental setup 

is the piston stroke of both the acoustic driver and the linear alternator. For this purpose two 

LVDTs (Measurement Specialties model XS-C 499 and LDM-1000 signal conditioning module) 

are used. These signals are fed to the control circuit in order to prevent over-stroking. Additionally, 



www.manaraa.com
29 

 

the signal of the acoustic driver/linear alternator LVDT used in conjunction with the dynamic 

pressure inside the enclosure volume to measure the thermal losses (hysteresis) in the acoustic 

driver/linear alternator enclosure volume.  

Moreover, the same acoustic driver/linear alternator LVDT signals are used in conjunction 

with the corresponding dynamic pressure microphones located near the acoustic driver/linear 

alternator to calculate the acoustic power at the exit of the acoustic driver and the inlet of the linear 

alternator. Figure 2.15 presents a digital image of the LVDT and its signal conditioner used in this 

work.  

 
 

Figure 2.15: Left: LVDT probe. Right: LVDT signal conditioner 

The LVDT rod must be well fixed and aligned with the piston. For this purpose, a 

connecting rod between the piston and the LVDT rod is used. Connecting rods are made of 

magnetized, ferromagnetic, or high conductivity metals (Aluminum, Brass, Copper, etc.) must not 

be used as they interfere with the LVDT operation. Connecting rods made of plastic or other non-

conductive materials are acceptable (AISI 300 Series austenitic (non-ferromagnetic) stainless 

steel). 

In this case, a special homemade Teflon plug and a stainless steel M3 screw are used.  

Figure 2.16 shows a digital image of the plug besides how it is connecting the LVDT rod to the 

piston. When ordering the LVDT probe, care must be taken to order the part with metric thread, 

and not the default British thread.   
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Figure 2.16: Left: LVDT rod plug and screw. Right: LVDT fixation to 

the piston back 

The LVDT installed such that it reads zero when the pistons are at their equilibrium 

positions and this zero reading is checked before and after operation to make sure that the pistons 

retain their original positions. 

2.4.7 Current and Voltage Measurements 

The input voltage (Vin) to the acoustic driver, the output voltage (Vout) on the electric load, 

and the open-circuit voltage (VOC) on the linear alternator are measured using a digital storage 

oscilloscope via a voltage probe (10-X attenuation).  

The input and output current (Iin and Iout, respectively) are measured by monitoring the 

voltage drop on a one Ω 100 W series resistance.  

2.4.8 System Protection 

The presented setup is protected against over-stroking (as discussed in subsection 2.3.6), 

against excessive current withdrawn at the acoustic driver (using a fast-acting fuse of 2.25 A) and 

against over-heating by monitoring the gas temperature close to the copper coils of the acoustic 

driver and linear alternator.  

2.4.9 Digital Oscilloscope 

Data acquisition of the dynamic pressure, LVDT signals, input and output voltages and 

currents are made using two digital storage oscilloscopes (Tektronix, Model TDS2024B, 4 

channels, 200 MHz bandwidths and 2 GS/s) running simultaneously and synchronized using 

LabVIEW with a sampling rate 5E4 Samples/s for 50ms (corresponding to about two acoustic 

cycles). This setting used to analyze the data in time domain with a time resolution of 20E-6 s. 

Figure 2.17 presents a digital image of the oscilloscopes. 
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Figure 2.17: Digital storage oscilloscope 

2.4.10 Data Acquisition Board: 

A data acquisition board (NI, Model USB-6225, 16-bit, 250 kS/s) is used to measure the 

temperature values of all thermocouples. The board is also used to provide visual monitoring of 

the strokes of the acoustic driver and the linear alternator, as an added protection to visualize if 

any of the pistons is approaching over-stroking. Figure 2.18 shows a digital image of the data 

acquisition board. 

Appendix D shows the steps of assembling the experimental setup. 

 

Figure 2.18: Data acquisition board 

2.5 Experimental Procedure 

This section summarizes the experimental procedure followed in this work:  

1- The required gas mixture is introduced to the resonator and the two enclosure volumes as 

follows: 

A. The vacuum pump used to evacuate the system from any traces of previous gas 

mixtures used. 

B. Argon gas used to fill the resonator and the two enclosure volumes.  
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C. The argon gas purged three times to reduce the molar fraction of air traces inside the 

system. Purging with argon is preferred over purging with helium since the former is 

less expensive, denser, and easier to vacuum.  

D. The required gas mixture concentration of argon and helium gases supplied from high-

pressure gas cylinders. Dalton's law used to introduce a certain gas mixture 

composition.  

E. To check that the gases are well mixed, the system filled to a mean pressure 5% higher 

than the required value and the operating frequency is monitored. The excess gas is 

then released and the frequency is observed again. If both values are the same, then the 

gases are well mixed. This technique utilized in Belcher [21]. 

2- The LVDTs power supply is turned on. It is critical to turn the LVDT power supply on 

before the stroke control circuit is turned on. This is to eliminate exposure of the stroke 

control circuit to spikes from the LVDT signal side. 

3- The position of the two LVDT’s is checked to make sure they retained their original 

positions by observing a zero reading on the LVDT signal using the oscilloscope display 

or using the LabView display on the PC screen.  

4- The stroke control circuit is turned on. For proper over-stroking protection, the system must 

not be used when the stroke control circuit is switched off. The circuit is designed in such 

a way that the system will not operate if the circuit is powered but either LVDT signal is 

not connected.  

5- The function generator is set on the required wave frequency and amplitude and the power 

amplifier is adjusted to apply the required amplification ratio. This setting will generate 

acoustic power at the required intensity and frequency. 

6- The rheostat is adjusted at the required electrical resistance value and then connected in 

series to the required set of zeners. The combined system of the rheostat resistance and the 

zeners form a non-linear electric load. This load is connected in parallel with the linear 

alternator. 

7- The experiment is allowed to operate for five minutes before acquiring any data to ensure 

that the system has warmed up and reached its steady state. 

8- The operator should avoid any sudden changes to the system. Examples of sudden changes 

are changing the input to the acoustic driver (e.g., changing the signal amplitude on the 

function generator or through the settings on the power amplifier) or changing the output 

of the linear alternator (e.g., disconnection of the electric load during system operation). 



www.manaraa.com
33 

 

Sudden disconnection of the electric load will cause the linear alternator stroke to increase 

significantly. Sudden changes on the input and/or the output will incur sever vibration in 

the system and should be avoided.  

9- The digital-storage oscilloscopes are properly synchronized adjusted to the proper settings 

corresponding to time or frequency domain measurements.  

10- The required data is acquired using two synchronized oscilloscopes. The operator should 

ensure that all the required signals appear on the PC screen before starting data acquisition.  

11- The operating frequency could be changed while the setup is running, but the acoustic 

driver current is monitored to avoid working at frequencies that make the acoustic driver 

withdraw excessive current and heat up or vibrate. 

12- After completion of data acquisition, the system is turned off by switching off the function 

generator. Then, the power to the stroke control circuit, the power supply of the LVDT, the 

oscilloscopes and the power amplifiers are turned off.  

13- The used gas mixture is released to the atmosphere at a very slow rate.   
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Chapter 3 - Results and Discussion 

This chapter presents and discusses the performance parameters of linear alternators and 

their calculation methods on a single basic case to demonstrate the abilities of this setup.  

In addition to, a parametric study to study the effect of operating frequency, the mean gas 

pressure and composition, the input volt and the electric load (zener break-down voltage and 

resistance value) on the basic case.  

Finally, the chapter presents and discusses the acoustic matching and the electrical 

matching via a different set of experiments.  

3.1 Calculation of Performance Parameters: 

The input electric power Pin is calculated using the dot product of the input current and 

voltage to the acoustic driver, where the bracket denotes averaging made after the dot product 

operation of the two waves:   

    𝑃𝑖𝑛 = 〈𝑉𝑖𝑛(𝑡). 𝐼𝑖𝑛 (𝑡)〉        (1)  

Similarly, the output electric power Pout is calculated as: 

    𝑃𝑜𝑢𝑡 = 〈𝑉𝑜𝑢𝑡(𝑡). 𝐼𝑜𝑢𝑡 (𝑡)〉        (2)  

The acoustic power produced by the acoustic driver is calculated using the average of the 

dot product of the dynamic pressure at the acoustic driver exit and the acoustic driver’s piston 

velocity:   

                                         𝐸𝐴𝐷 = 〈𝑃𝐴𝐷(𝑡). 𝑈𝐴𝐷(𝑡)〉                                           (3) 

In the meantime, it should be realized that the time-averaged acoustic power,𝐸𝐴𝐷 supplied 

by a moving piston of Area A is given by:  

𝐸𝐴𝐷 = 𝐹𝑅𝑀𝑆 ∗ 𝑉𝐴𝐷𝑅𝑀𝑆
=  𝑃𝐴𝐷𝑅𝑀𝑆

∗ 𝐴 ∗ 𝑉𝐴𝐷𝑅𝑀𝑆
=  𝑃𝐴𝐷𝑅𝑀𝑆

∗  𝑈𝐴𝐷𝑅𝑀𝑆
=  

|𝑃𝐴𝐷|∗ |𝑈𝐴𝐷|

2
     (4) 

Since, 

                                                    |𝑈𝐴𝐷| =  𝜔 |𝑑|                                                                   (5) 

 Where d is the acoustic driver piston’s stroke amplitude. 

Thus,  

                                                        𝐸𝐴𝐷 =  
|𝑃𝐴𝐷|∗𝐴∗ 𝜔|𝑑|

2
      (6) 

  

Indicating that the acoustic power is proportional to the dynamic pressure amplitude, piston area, 

operating frequency and magnitude of piston stroke.   
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The acoustic driver dynamic pressure amplitude (PAD) can be related to the volumetric 

velocity of the acoustic driver piston (𝑈𝐴𝐷) through the acoustic impedance (Z) which is the ratio 

between the dynamic pressure and the volumetric velocity: 

                                      𝑍 =  
𝑃𝐴𝐷

𝑈𝐴𝐷
                (7) 

Substituting equation 7 in equation 6 to get:  

                    𝐸𝐴𝐷 =  
𝑍

2
∗ (𝑑 ∗ 𝜔)2 ∗  𝐴2                            (8) 

 

Equation (8) is of great value since for a given acoustic load, it indicates the relationship between 

the acoustic power, piston stroke, operating frequency and the piston diameter.  

 

The acoustic power received by the linear alternator is calculated as: 

    𝐸𝐿𝐴 = 〈𝑃𝐿𝐴(𝑡). U𝐿𝐴(𝑡)〉                                                                (9) 

The electro-acoustic conversion efficiency (AD) of the acoustic driver is calculated as: 

     η
AD

=  
EAD

Pin
                                                               (10) 

The acoustic-to-electric conversion efficiency (LA) of the linear alternator is calculated as: 

     η
LA

=  
Pout

ĖLA
                                                               (11) 

The overall conversion efficiency overall is calculated as: 

     η
overall

=  
Pout

Pin
                                                        (12) 

3.2 Basic Case 

The target of this part was to identify a set of operating conditions that provides reasonable 

matching, both acoustically and electrically and to thoroughly analyze the results. After many 

preliminary runs, the domains of the different operating variables were scanned and their effects 

on the performance evaluated until a set of operating parameters was identified. The criteria of 

selection of the operating parameters that are used are: large input power, high overall conversion 

efficiency and large output electric power. Table 3.1 summarizes the performance parameters of 

this case. 
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Table 3.1: Performance parameters of the case presented. All phases are measured simultaneously with 

respect to the dynamic pressure in acoustic driver enclosure 

Operating conditions 

Gas type 40%He 60%Ar 

Mean gas pressure 12 bar 

Zener break-down voltage 
10 forward  zeners in parallel and 10  backward zeners in 

parallel, each of 6 V break-down voltage 

Electric resistance in series with 

the zener circuit 
22  

Operating frequency 54 Hz 

Input volt to the acoustic driver 
Amplitude: 20.69 VRMS 

Phase: 97.2 

Measured Parameters 

Parameter Name Value Phase 

Acoustic driver enclosure dynamic pressure amplitude, kPa 5.79 0 

Resonator dynamic pressure amplitude inside the resonator, kPa 13.64 103.8 

Linear-alternator enclosure dynamic pressure amplitude, kPa 7.48 170 

Acoustic driver stroke pk-pk, mm 2.70 56.7 

Linear alternator pk-pk, mm 2.80 40 

Input current, ARMS 0.51 91.7 

Input electric power, W 10.40 -- 

Output volt, VRMS 12.89 40.4 

Output current, ARMS 0.28 36.5 

Output electric power, W 3.50 -- 

Overall conversion efficiency, % 33.64 -- 

Open-circuit volt, V 35.1 5 
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3.2.1 Time and Frequency Domain Analysis 

The following sections present the measured data in time and frequency domains. 

Figure 3.1 presents the data in the time domain. This presentation allows observing the wave shape, 

signal amplitude and phase and relative phasing between all measured variables.  

 

  

  

  

Figure 3.1: Time domains of all measured variables 

Operating conditions: 54 Hz, 12 bar, 40% He 60% Ar,20 VRMS, 22, 6V zener  
 

The frequency content of each variable is presented in Figure 3.2. The frequency resolution 

is calculated as the ratio between the sampling rate and the number of data points, to be 2500/2048 

=1.22 Hz. 
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Figure 3.2: Frequency domains of all measured variables  

Operating conditions: 54 Hz, 12 bar, 40% He 60% Ar,20 VRMS, 22, 6V zener 
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This data set shows many important features: 

- The operating conditions (the operating frequency, mean gas pressure and composition and 

load) allows for loading of the acoustic driver, giving rise to an input electric power of 10.4 

Watts. 

- The operating conditions yielded a phase difference between the input voltage and current to 

the acoustic driver of 5.5 (voltage is leading, because of the inductive load in the acoustic 

driver), indicating a power factor of 0.99. 

- The operating conditions (mainly the mean gas pressure and composition) yielded reasonable 

strokes on both the acoustic driver and the linear alternator. The values of the strokes 

amplitudes are not too low and not close to the stroke limits. 

- The operating conditions yielded reasonable output electric power (3.5 W), with a 

corresponding overall conversion efficiency of 33.6 %. 

- The operating conditions (mainly the operating frequency) yielded large input power, 

reasonable strokes at low input current. Operating at low input current is critical to avoid 

overheating and to allow low copper losses and thus large conversion efficiency. 

- It was consistently observed that the operating conditions that lead to equal stroke on the 

acoustic driver and the linear alternator (as shown in Figure 3.1C) always lead to maximum 

conversion efficiency. This is a result of the acoustic matching between the acoustic driver 

and the linear alternator, which gives rise to having both units operate together as a single unit 

without slip. The equal-stroke operating point can always be obtained for any given gas 

mixture, pressure and load by tuning the frequency of operation or by tuning the resistance 

value of the load at constant operating frequency. However, different equal-stroke points have 

different conversion efficiencies.  

- As a result of the acoustic matching between the acoustic driver and the linear alternator, it is 

observed that the phase shift between the dynamic pressure in the acoustic driver enclosure 

and the dynamic pressure in the linear alternator is 170, which is very close to 180, as seen 

in Figure 3.1B. This arises from the fact that both the acoustic driver and the linear alternator 

move “together” in a synchronized manner such that the acoustic driver’s piston is at its top 

dead center at the same moment in time when the linear alternator’s piston is at the bottom 

dead center and vice versa.  

- The close to 180 phase shift described in point 7 above gives rise to nearly 180 phase shift 

between the acoustic driver stroke and the linear alternator stroke, as seen in Figure 3.1C. 
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- The use of non-linear load gives rise to non-sinusoidal output current and voltage at the linear 

alternator output. The harmonic content in both signals show the fundamental component at 

the operating frequency as well as significant harmonics at the third, fifth and seventh 

harmonics, as observed in Figure 3.2. The rest of the parameters involved (input volt and 

current, dynamic pressures and strokes) show much less harmonic content.  

- Figure 3.2H and Figure 3.2I show the frequency content of the output volt and output current. 

Because these AC signals have half-wave symmetry in the time domain (i.e., if shifted one 

half period and inverted, it is identical to the original function), even harmonics are always 

absent and only odd harmonics are generated.  

- In comparison with the use of linear load (presented in Figure 3.10), the use of non-linear 

load caused some harmonic generation on the input current withdrawn by the acoustic driver 

(as can be observed by comparing Figure 3.2B to Figure 3.10B). 

- The stroke wave forms of both the acoustic driver and the linear alternator are measured with 

high temporal resolution (50 kS/s). The captured wave forms then are curve-fitted, using least 

square method, to a sine wave with a fundamental and seven harmonics, each with its 

amplitude and phase. The resulting algebraic expression then is differentiated with respect to 

time yielding an expression for the piston’s velocity. The measured stroke, the fitted stroke, 

the calculated piston’s velocity and the dynamic pressure wave forms are compared together 

in Figure 3.1E and Figure 3.1F. This comparison allows calculation of the phase shift between 

the dynamic pressure and the piston’s velocity. These phase shifts are 58ᵒ (velocity leads) and 

56ᵒ (pressure leads) for the acoustic driver and the linear alternator enclosures, respectively. 

These values indicate operation neither at standing-wave mode nor at travelling wave mode.  

- In comparison with the use of linear load (presented in Figure 3.10), the use of linear load 

caused the phase shifts between the dynamic pressure and the piston’s velocity in the acoustic 

driver and the linear alternator stated in point 12 above to be 34ᵒ (pressure leads) and 66ᵒ 

(velocity leads), respectively. This indicates that the non-linearity of the load propagated 

upstream to affect the phases between dynamic pressure and velocity in the linear alternator 

as well as acoustic driver.    

3.2.2 Effects of Operating Parameters on the Basic Case 

This section analyses the effects of the operating parameters on the performance of the basic case 

presented in section 3.2 above. 
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3.2.2.1 Operating Frequency 

Figure 3.3 shows the effects of the operating frequency on the system performance, and the 

following points can be observed:  

- Two important points can be identified on the curve: the point of maximum overall 

conversion efficiency (54 Hz) and the point of maximum output power (58 Hz). This is a 

manifestation of the trend generally observed in thermoacoustic devices that conversion 

efficiency and power density occur at two different points  

- The point of minimum current withdrawn by the acoustic driver is also shown (at 47 Hz). 

This point is of special importance if the system is to be driven at large input voltages  

- As the difference between the acoustic driver stroke and the linear alternator stroke 

increase, the overall efficiency of the system decreases, which is an indication of poor 

acoustic matching at some frequencies. As indicated in section 3.2.1, the point of maximum 

efficiency occurs at the point of equal strokes  

- In comparison with other operating parameters, as will be seen later, the operating 

frequency and the use of zener diodes in the load have more pronounced effects on the 

system performance more than any other operating parameter. 

  

 

Figure 3.3: Effect of frequency on the system variables  

Operating conditions: 12 bar, 40% He 60% Ar,20 VRMS, 22, 6V zener  
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3.2.2.2 Mean Gas Pressure 

This range of selected working pressure in Figure 3.4 (from 8 bar to 15 bar) does not show 

a significant effect on the performance of the system. Section 3.3.1 below shows detailed effect of 

the mean gas pressure on the performance. Nevertheless, the mean gas pressure affects the product 

of the mean density and the speed of sound, which in turns affects the output acoustic power. 

  

 

Figure 3.4: Effect of Mean pressure on the system variables  

Operating conditions: 54 Hz, 40% He 60% Ar,20 VRMS, 22, 6V zener 

3.2.2.3 Mixture Composition 

When choosing a specific gas mixture to use in a TAPC, the following criterion must be 

considered:  

- The gas mixture used should maximize the power density in the setup. The power density 

is proportional to the product of the cross sectional area, the gas mixture density and the 

velocity of sound in the gas mixture. Thus, the product of gas mixture density and gas 

mixture speed of sound is of interest. The increase of this product decreases the stroke of 

the acoustic driver (since it increases the acoustic load seen by the driver), increases the 

stroke of the linear alternator (since it improves the acoustic coupling between the acoustic 

driver and the linear alternator), and increases the dynamic pressure and increases the 

output electric power. These effects are further affected by the Prandtl number effects 
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described below. According to Figure 3.5D, this selection factor recommends the use of 

pure argon gas at large mean pressures.  

- The gas mixture used should minimize the Prandtl number in order to decrease the viscous 

losses. This is because the Prandtl number can be expressed as (Pr = kinematic 

viscosity/thermal diffusivity). According to Figure 3.5A below, this selection factor 

recommends the use of a gas mixture of 60% Helium and 40% Argon. 

- The gas mixture used should enhance the heat transfer coefficient on the gas side of the hot 

and cold heat exchangers used in thermoacoustic devices. For this purpose, the gas side 

heat transfer coefficient can be expressed as [22]: 

h = 0.7 
k

δk
                                                (13) 

Where, h is the heat transfer coefficient, k is the thermal conductivity and δk can be 

represented as following: 

                                          δk =  √
2k

ρ∗ Cp∗ ω
                                                      (14) 

and thus large thermal conductivity is preferred. For this purpose, practical thermoacoustic engines 

that are built already use helium at high pressures.  Since the current work does not employ a 

thermoacoustic engine, and thus will not employ hot/cold heat exchangers, this selection factor 

will not be considered for this setup. This issue is an important and critical factor in real TAPC, 

however. Clearly, the above selecting criterion do not lead to a single optimum gas or gas mixture.  

  

  

Figure 3.5: Gas mixture properties  

A: Prandtl number. B: Thermal conductivity. C: Speed of sound. D: Density multiplied by speed of sound 

A B 

C D 
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The current work studies different gases/gas mixtures, including 100% argon, 100% helium 

and different helium molar fractions in between. The effect of the working gas mixture on the 

system behavior is shown in Figure 3.6. 

  

 

Figure 3.6: Effect of gas mixture on the system variables 

Operating conditions: 54 Hz, 12 bar, 20 VRMS, 22, 6V zener 

The gas mixture has a great effect on the behavior of the system as it affects all the 

parameters of the system. These effects are as follows: 

- At mixture 40% He 60% Ar, the system performance is enhanced (large dynamic pressure 

at the resonator and large input and output electric powers). In view of the parameters 

affected by the gas mixture listed above in this section, this peak in the system performance 

can be explained by the decrease in the viscous losses encountered in the system since this 

gas mixture results in the minimum Prandtl number amongst the different mixtures used. 

This in turn indicates the importance of proper surface finish (minimum surface roughness) 

on the inner surfaces of the system parts and the importance of the lengths of the different 

parts involved.  

- Beside the low value of Prandtl number of this gas mixture, the used gas mixture has a 

mean pressure of 12 bar (abs) in order to achieve a large product of the mean density times 

the speed of sound. 

- Once this mixture is identified, based on the minimum Prandtl number point, the operating 

frequency is set in order to observe equal strokes of the acoustic driver and linear alternator, 

in order to achieve proper acoustic matching.  
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- At helium molar fraction larger than 60%, two negative effects take place: The first is that 

the product of the mean density times the speed of sound decreases, and the second is that 

the Prandtl number (and hence viscous losses) increases. The net effect of these two 

combinations give rises to a deteriorated system performance (for example, an increase in 

helium molar fraction from 60% to 100% decreases the overall conversion efficiency from 

31% to 19%).  

- In contrast, at helium molar fractions less than 40%, only one negative effect takes place, 

which is the increase in Prandtl number and associated increase in viscous losses. The 

effect on the system performance is not as pronounced as in item 4 above, giving rise to a 

gradual decrease in system performance. For example, a decrease in helium molar fraction 

from 40% to 0% decreases the overall conversion from 33% to 32%.  

- In reference to Figure 3.5C above showing the speed of sound in He/Ar mixtures, it can be 

seen that the speed of sound in the mixture decreases significantly as the argon molar 

fraction increases from zero upwards. For example, the speed of sound in helium is 1029 

m/s and is 747 m/s at 90%He/10% Ar. This significant sudden change in the speed of sound 

at high helium molar fractions gives rise to the need to use larger operating frequencies in 

order to maintain the acoustic matching.  

3.2.2.4 Input Electric Power 

All the input and output parameters are expected to increase with the increase of the input volt, 

which is realized in the results presented in Figure 3.7. Few points can be observed: 

- There are main losses in the system: Viscous fluid losses in the resonator/enclosures 

(decrease as the Prandtl number decrease), Ohmic heating losses (I2R), motion losses 

(RmUAD
2 and RmULA

2), seal losses (proportional to P2 across the piston seal, which is 19.1 

um [20] in the models used in this work) and motor/alternator space thermal 

hysteresis losses. It is a design objective to always keep these losses balanced. In this work, 

the increase in the input voltage causes the current withdrawn/generated at the acoustic 

driver/linear alternator to increase (thus increasing the I2R losses), the dynamic pressure to 

increase (thus increasing the seal and thermal hysteresis losses), the strokes of the acoustic 

driver/linear alternator to increase (thus increasing the motion losses RmUAD
2 and RmULA

2). 

The results presented in Figure 3.7 indicate that as the input voltage increases, a slight 

decrease in the overall conversion efficiency beyond an input volt of 31 VRMS occurs. This 

indicates that in the considered range, the different losses remain almost balanced.  
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- Without consideration of the losses, the input voltage in itself does not affect the acoustic 

matching (which controlled mainly by the operating frequency). Consequently, the system 

continue to experience equal stroke operation until an input voltage of 52 VRMS Beyond 

this point, the motion and viscous losses cause the linear alternator’s stroke to be slightly 

less than the acoustic driver’s stroke. 

  

 

Figure 3.7: Effect of input volt on the system variables 

Operating conditions: 54 Hz, 12 bar, 40% He 60% Ar, 22, 6V zener 

3.2.2.5 Electrical Resistance  

The value of the electrical resistance directly affects the load matching. The presented results 

in Figure 3.8 indicate the following:  

- Again, the point of equal stroke (corresponding to a resistance value of 20) is the point 

of maximum overall conversion efficiency.  

- In this work where the frequency at which the generated acoustic power is supplied and 

the value of the load resistance can be both controlled, finding a point of maximum 

conversion efficiency is relatively easy. However, in real TAPC’s, the operating frequency 

cannot be controlled, making the need for simultaneous acoustic and electric matching 

much more complicated.  

- Beyond the point of maximum conversion efficiency, as the value of the electric load 

increases, the acoustic driver stroke’s increases with respect to the linear alternator’s 

causing the input power (~ acoustic driver’s stroke) to increase at a faster rate than the 
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output power (~ linear alternator’s stroke). Consequently, the conversion efficiency 

decreases.  

  

 

Figure 3.8: Effect of Electrical resistance on the system variables 

Operating conditions: 54 Hz, 12 bar, 40% He 60% Ar, 20 VRMS, 6V zener 

 

3.2.2.6 Zener Diode Breakdown Voltage  

Real TAPC’s will be connected to the grid, which is a non-linear load. However, in the 

development phase they must be connected to a load in the laboratory. Section 2.3.6 discussed the 

need that this load must be of non-linear nature. However, the effects of the use of these non-linear 

loads on the performance of the system must be investigated. For this purpose, the data presented 

in section 3.2.1 above are repeated but without the nonlinear element represented in the zener parts. 

Their results are shown in Figure 3.9 and Figure 3.10 below.  
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Figure 3.9: Time domains of all measured variables 

Operating conditions: 54 Hz, 12 bar, 40% He 60% Ar,20 VRMS, 22, No zener 
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Figure 3.10: Frequency domains of all measured variables  

Operating conditions: 54 Hz, 12 bar, 40% He 60% Ar, 20 VRMS, 22, No zener 
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The following points can be observed: 

- In comparison with the use of linear load (presented in Figure 3.10), the use of non-linear 

load caused some harmonic generation on the input current withdrawn by the acoustic 

driver (as can be observed by comparing Figure 3.2B to Figure 3.10B). 

- In comparison with the use of linear load (presented in Figure 3.10), the use of linear load 

caused the phase shifts between the dynamic pressure and the piston’s velocity in the 

acoustic driver and the linear alternator stated in point 12 above to be 34ᵒ (pressure leads) 

and 66ᵒ (velocity leads), respectively as opposed to 58ᵒ (velocity leads) and 56ᵒ (pressure 

leads) for the non-linear load case. This indicates that the non-linearity of the load 

propagated upstream to affect the phases between dynamic pressure and velocity in the 

linear alternator as well as acoustic driver.    

The use of different zeners with different break-down voltages is investigates as well. The 

larger the break-down voltage of the zener the larger is the non-linearity involved. The results are 

presented in Figure 3.11.   

  

 

Figure 3.11: Effect of zener breakdown voltage on the system variables 

Operating conditions: 54 Hz, 12 bar, 40% He 60% Ar, 20 VRMS 
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Zener diode breakdown voltage has a significant effect on the performance of the system and 

can be summarized as follows: 

- As the zener break down voltage increases, the system is faced with a larger resistance and 

is forced to generate a larger output voltage and a larger output power. However, the use 

of larger break-down voltages increases the non-linearity and the corresponding losses and 

causes the overall conversion efficiency to decrease after a certain limit.  

- The selection of the break-down voltage should be made carefully because a value that is 

too low causes the system to develop low output power, a value that is too high causes 

significant non-linearity and lower conversion efficiency and a value even higher simulates 

an open circuit (if the break-down voltage is higher than the open-circuit voltage). Another 

limit on the break down zener voltage is discussed below.  

- The linear alternator stroke is generally proportional to the generated voltage. Thus, as the 

zener break-down voltage increases, the developed voltage at the linear alternator increases 

and the linear alternator stroke increases. This increase in the linear alternator stroke may 

negatively affect the acoustic matching with the acoustic driver.  

(The relationship between voltage and piston stroke is not completely straightforward - it 

depends on how close the system is to resonance, for example.  If the charge pressure 

changes as the engine warms up or cools down, that could change the proportionality 

between them). 

- The typical power rating of zener diodes is usually around 5 W. The developed output 

power is shared between the zeners and the resistances. If the zener is subjected to an output 

power larger than its rated value, then more zeners are to be used in parallel such that they 

have equal power sharing. However, the minimum number of zeners should be used, 

without overheating of any of them, to reduce the non-linearity involved.   
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3.3 Performance Analysis 

This part presents the system performance under different operating conditions, including 

different frequencies, mean gas pressures, gas mixtures, break-down voltages, input voltages, 

and resistances.  

3.3.1 Effects of Gas Composition and Mean Pressure 

The following three figures present the performance indices (input and output powers, 

acoustic driver and linear alternator strokes, dynamic pressure at the resonator, input and output 

volts and current and the overall conversion efficiency) for an array of operating conditions. 

(Frequency range 45-70 Hz, mean gas pressures: 4 bar, 12 bar and 21 bar, gas mixture composition: 

100% helium, 60% helium /40% argon, 40% helium /60% argon, and 100% argon, 22 Ohm load 

resistance with 6V zeners at 20 Vrms input to the acoustic driver). The results are presented at 21 

bar (Figure 3.12) then at 12 bar (Figure 3.13), and finally at 4 bar (Figure 3.14).  

 Mean pressure has a significant effect on the performance of the system and can be 

summarized as follows: 

- As the mean gas pressure increase the overall conversion efficiency increase as the increase 

in mean gas pressure, increase the power density without an increase in the required input 

power. 

- Increasing the mean pressure decrease the acoustic driver stroke which allows more 

loading of the acoustic driver without suffering of over-stroking of either in the acoustic 

driver or in the linear alternator.  

- For all different pressures, still the point of maximum efficiency differ from the point of 

maximum power. Which is considered as a known phenomenon in thermoacoustic devices. 
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Figure 3.12: Frequency response at 21bar mean gas pressure 

20 VRMS, 22 Ω, 6V zener 
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Figure 3.13: Frequency response at 12 bar mean gas pressure 

20 VRMS, 22 Ω, 6V zener 
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Figure 3.14: Frequency response at 4 bar mean gas pressure 

20 VRMS, 22 Ω, 6V zener 
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3.3.2 Effects of Input Voltage 

Figure 3.15 present the performance indices (input and output powers, acoustic driver and 

linear alternator strokes, dynamic pressure at the resonator, input and output volts and current and 

the overall conversion efficiency) for an array of operating conditions. (Electric resistance range: 

5-60 Ω, mean gas pressures: 12 bar, gas mixture composition: 40% helium /60% argon with 6V 

zeners at an input volt range: 20-60 Vrms to the acoustic driver).  

Input electric volt has a significant effect on the performance of the system and can be 

summarized as follows: 

- Varying the electrical resistance does not have a significant effect on the value of the 

dynamic pressure amplitude as the input volt. 

-  The linear alternator stroke is strongly affected by both the increase in the input volt and 

the increase in the value of the electrical resistance. 

- The value of the linear alternator increase with a uniform value as the input volt increase, 

except for the increase from 50 VRMS to 60VRMS a slight increase is monitored this could 

be due to the increase of the non-linearity inside the system with the increase of the input 

power to the acoustic driver.  

- The overall conversion efficiency seems to be decreasing with the increase of the input 

electric power to the acoustic driver. Which is also considered as an indicator of non-

linearity with the increase of input power.    
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Figure 3.15: Electrical resistance response at 12 bar mean gas pressure and 6V zener 

 

 



www.manaraa.com
58 

 

3.3.3 Effects of Electric Load Resistance  

This set of results show very valuable data on how to control the linear alternator’s stroke 

using the load resistance and/or the zener breakdown voltage, with and without non-linear loads, 

as well as the effects of the change in the load resistance on the other parameters of the system.  

Figure 3.16 present the performance indices (input and output powers, acoustic driver and 

linear alternator strokes, dynamic pressure at the resonator, input and output volts and current and 

the overall conversion efficiency) for an array of operating conditions. (Electric resistance range: 

5-60 Ω, mean gas pressures: 12 bar, gas mixture composition: 40% helium /60% argon with zeners 

Breakdown voltage range: 6V – 20V at an input volt range: 20 Vrms to the acoustic driver).  

Zener breakdown voltage has a significant effect on the performance of the system and can 

be summarized as follows: 

- Working with linear load -no zener- gives high conversion efficiency as the value of 

electrical resistance increase. In real TAE this could not be used as linear load will cause 

the engine either to over stroke or to have problems in startup due to the presence of 

transient region as stated in [9]. 

- With the increase of the value of the zener breakdown voltage the overall conversion 

efficiency decrease due to the increase of non-linearity inside the system. So that’s why it 

is recommended to use the least value of zener breakdown voltage.  

-  Zener breakdown voltage has a significant effect on the value of linear alternator stroke. 

As the breakdown voltage increase the output volt from linear alternator increase hence the 

linear alternator stroke increase. 
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Figure 3.16: Electrical resistance response at 12 bar mean gas pressure and  20 VRMS 

 

 

 



www.manaraa.com
60 

 

3.4 Retest Reliability 

The repeatability of the results presented is studied for a certain set of operating conditions. 

This set is as follows: a working mixture of 40% He/ 60% Ar, a mean gas pressure of 12 bar, an input 

voltage to the acoustic driver of 20 VRMS, a load resistance of 22Ω, and a ten set of 6V zener. The results 

for four repeated sets are presented in Figure 3.17 below.   

  

  

  

  



www.manaraa.com
61 

 

  

Figure 3.17: Frequency response for basic case to check system repeatability 
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Chapter 4 - Conclusions, Summary and Future Work 

4.1 Conclusions and Summary 

Linear alternators are essential parts of TAPC’s. They require two simultaneous matching: 

acoustic matching with the thermoacoustic engine (or source of acoustic power) and electric 

matching with the load used. In this regard, the current work presents and discusses the following 

issues: 

1- The experimental method to test linear alternators in the absence of thermoacoustic 

engines (and their associated problem) and under controlled conditions.  

2- The experimental technique to test the acoustic and electric matching of linear 

alternators under different conditions.  

3- The work discussed the need of non-linear loads and the use of back-to-back zener 

diodes as non-linear loads.  

The effects of the use of non-linear parts on the system performance via comparison 

with linear simple resistive loads 

Proper operation of TAPC’s require simultaneous observation of two conditions: proper 

frequency and achievement of rated stroke at the rated output power. An additional constraint is 

protection against over-stroking. Simultaneous satisfaction of these conditions is usually 

complicated. The present work presents some general guidelines that can be used to help at the 

design stage. They guidelines are: 

1- It is critical to be able to know which load corresponds to which stroke. The linear 

alternator’s stroke is proportional to the resistance of the load up to a certain limit. This 

valuable information can help to adjust the stroke to the required level. Real operation 

with TAPC’s will either feed into the grid (a fixed load that cannot be controlled) or 

either into a user’s load (can be controlled). (If connected to the electrical grid, the 

voltage is forced by the grid, and thereby the stroke (proportional to voltage) is also 

fixed.  The grid acts as a very non-constant resistor: near zero if generated voltage is 

lower than grid, and near infinite if the voltage is higher than grid.  Similar non-linear 

loads can be built with solid-state components that switch resistance levels rapidly 

(much faster than engine cycle frequency) to give a similar effect). 
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2- Based on item 1 above, a stall circuit is introduced that introduces a high-power low 

resistive-load in parallel to the linear alternator to limit the stroke of the alternator if 

the measured stroke exceeds a certain critical limit. This is critical in actual TAPC’s, 

particularly during the development and initial testing phase.   

3- The working gas used has large effects on the satisfaction of these conditions 

simultaneously. The effects of the product of the mean gas density times the speed of 

sound are presented and discussed. Actual TAPC’s require more conditions like large 

thermal conductivity (for enhanced heat transfer coefficient on the gas side) as well as 

low Prandtl number (for low viscous losses). 
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4.2 Suggestions for Recommended Future Work 

The following are suggestions for possible work in this field 

1- Investigate the effects of the front volume (AKA compression volume) on the linear 

alternator performance. This volume refers to the compressible volume in front of the 

alternator's piston. Reducing this volume reduces the viscous losses and affects the stroke 

required to generate a certain power, thus affecting the conversion efficiency. However, 

there is a limit on the minimum volume required to house the different components and 

special care should be taken since a smaller volume may incur sudden changes in shape 

while smooth transitions correspond to large compression volumes. Some of the methods 

include modifying the piston so that it has a stepped profile or an added-on piece that 

occupies some of the compression volume, but this increases the moving mass and lowers 

the mechanical resonance frequency.  

2- Studying the role of the back volume (the volume enclosing the alternator, AKA the 

enclosure volume) on the conversion efficiency and the mechanical resonance frequency. 

Enlarging this volume reduces the pressure wave in the backspace, which in turn 

reduces the thermal relaxation losses and the seal losses, causing an increase in the 

conversion efficiency. However, this significantly increases the total volume of the system, 

causing a decrease in the power density.  

3- Use of electronic loads that employ pulse width modulations, to simulate matching of 

different non-linear loads (constant voltage, constant current on constant power) on the 

linear alternator's performance.  

4- Replacing the acoustic driver with thermoacoustic engine in order to test the effect of the 

transient work on the behavior of the linear alternators. 
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Appendix A - DeltaEC Code 

Begin segment 

This segment contains the required mean working gas pressure and mixture, the operating 

frequency, the dynamic gas pressure amplitude and the volumetric gas velocity and their phases at 

the starting point of the system, which is end of the acoustic driver enclosure.  

Anchor segment 

The sole target of this segment is to dissipate any heat energies in the system in order to 

only study the acoustic behavior of the system. This is used because the system does not contain 

heat exchangers. 

Acoustic driver (VESPEAKER segment) 

The segment of the acoustic driver is chosen as (VESPEAKER) because in this segment 

the amplitude of the input volt to the acoustic driver and its angle relative to the dynamic pressure 

are input parameters by the user. Thus, this selection facilitates the process of controlling the input 

power to the acoustic driver.   

Linear alternator (IESPEAKER segment) 

The linear alternator is chosen as (IESPEAKER) in order to be able to monitor the 

amplitude and the phase of the generated current from the linear alternator. The recommended 

maximum current limit by the supplier is 2A (RMS) in order to protect the coil of the linear 

alternator from overheating. 

An important point is the value of the BL product (transduction coefficient): since the linear 

alternator used in the lab originally is designed and built as an acoustic driver, its BL product is 

de-rated by 0.8 [16]. 

Resonator (DUCT segment) 

Resonator (AKA front volume) is chosen as (DUCT) segment. Its diameter must be equal 

to the piston diameter of the linear alternator to avoid any minor losses due to sudden diameter 

changes. The DeltaEC allows numerical simulation of the effects of the resonator length on the 

system performance.  

Enclosure volumes (DUCT segment) 

Enclosure volumes (AKA back volumes) are chosen as (DUCT) segment. The length and 

diameter must be greater than the outer dimensions of the used acoustic driver and linear alternator. 

The DeltaEC allows numerical simulation of the effects of the enclosure volume (via a controlled 

change in the length) on the system performance.  
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Other segments (RPN segments) 

Different (RPN) segments are used to monitor and control the following parameters: 

1- Acoustic driver stroke amplitude=  
amplitude of volumetric velocity of acoustic driver 

piston area∗angular frequency
 

2- Acoustic driver electric-to-acoustic efficiency=  
Output acoustic power 

Input electric power
 

3- Enforcing resonance at the beginning of the resonator:  

Phase (Dynamic pressure) −  Phase of (Volumetric velocity) 

4- Enforcing desired dynamic pressure amplitude inside the resonator  

5- Linear alternator acoustic-to-electric efficiency=  
Output electric power 

Input acoustic power
 

6- Linear alternator stroke amplitude = 
amplitude of volumetric velocity of linear alternator

piston area∗angular frequency
 

 

7- Enforcing the angle between volt and current in linear alternator 

Phase (LA volt) −  Phase of (LA current) 

8- Over all conversion efficiency for the setup=  
Output electric power 

Input electric power
 

 

!---------------------------------  0 --------------------------------- 

BEGIN       

 1.2000E+06 a Mean P Pa                  

   50.019   b Freq   Hz       G          

  300.00    c TBeg   K                   

 8908.1     d |p|    Pa       G          

     0.0000 e Ph(p)  deg 

     0.0000 f |U|    m^3/s               

     0.0000 g Ph(U)  deg 

0.6000  jnL 

HeAr           Gas type                  

!---------------------------------  1 --------------------------------- 

ANCHOR     Energy dissipation 

!---------------------------------  2 --------------------------------- 

DUCT       Acoustic driver enclosure 

 8.0000E-03 a Area   m^2                 8874.8     A |p|    Pa 

0.8600  bPerim  m                   3.0900E-03 B Ph(p)  deg 

0.1300  c Length m                   1.4648E-03 C |U|    m^3/s 

     0.0000 d Srough                      -90.42    D Ph(U)  deg 

                                        -4.7992E-02 E Htot   W 

ideal           Solid type              -4.7992E-02 F Edot   W 
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!---------------------------------  3 --------------------------------- 

VESPEAKER  Qdrive (1s102d-x) - Acoustic Driver (S/N:777) 

 2.0000E-03 a Area   m^2                 1.2000E+04 A |p|    Pa 

6.7000  b R      ohms                 -90.427   B Ph(p)  deg 

 8.6400E-02 c L      H                   1.4645E-03 C |U|    m^3/s 

   47.690   d BLProd T-m                  -90.427   D Ph(U)  deg 

0.4922  e M      kg                     8.7873  E Htot   W 

 3.0490E+04 f K      N/m                    8.7873  FEdot   W 

4.6900  g Rm     N-s/m                 12.099   G WorkIn W 

   31.370   h |V|    V        G            31.370   H Volts  V 

  127.17    iPh(V)  deg      G             0.77324 I Amps   A 

                                           -4.0236  JPh(V/I) deg 

                                         1.4979E+04 K |Px|   Pa 

ideal           Solid type               -126.76    L Ph(Px) deg 

 

 

 

!---------------------------------  4 --------------------------------- 

RPN        Acoustic driver efficiency 

     0.0000 a G or T                    72.631                    A % 

3F 3G / 100 * 

!---------------------------------  5 --------------------------------- 

RPN        Acoustic driver stroke (amplitude) 

 2.3300E-03 a G or T          =5A       2.3300E-03                A ChngeMe 

3C 3a / w / 

!---------------------------------  6 --------------------------------- 

RPN        enforce Resonance 

     0.0000 a G or T          =6A            0.0000               A deg 

3B 3D - 

!---------------------------------  7 --------------------------------- 

RPN        enforce desired pressure amplitude 

 1.2000E+04 a G or T          =7A       1.2000E+04                A pa 

p1 mag 

!---------------------------------  8 --------------------------------- 

DUCT       Change Me 

sameas   9a a Area   m^2      Mstr       1.1998E+04 A |p|    Pa 

    0.15853 b Perim  m        8a          -90.672   B Ph(p)  deg 

sameas   9c c Length m                   1.4669E-03 C |U|    m^3/s 

     0.0000 d Srough                      -94.133   D Ph(U)  deg 

8.7840  EHtot   W 

ideal           Solid type                  8.7840  F Edot   W 

!---------------------------------  9 --------------------------------- 

DUCT       Resonator 
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 2.0000E-03 a Area   m^2      Mstr       1.1993E+04 A |p|    Pa 

    0.39354 b Perim  m        9a          -90.917   B Ph(p)  deg 

 2.5000E-02 c Length m                   1.4743E-03 C |U|    m^3/s 

     0.0000 d Srough                      -97.844   D Ph(U)  deg 

8.7758  EHtot   W 

ideal           Solid type                  8.7758  F Edot   W 

!--------------------------------- 10 --------------------------------- 

IESPEAKER  Qdrive (1s102d-x) - Linear Alternator(S/N:774) 

 2.0000E-03 a Area   m^2                 8930.6     A |p|    Pa 

6.7200  b R      ohms                 172.59    B Ph(p)  deg 

 8.4100E-02 c L      H                   1.4740E-03 C |U|    m^3/s 

   38.408   d BLProd T-m                  -97.838   D Ph(U)  deg 

0.4780  e M      kg                  4.8597E-02 E Htot   W 

 3.0940E+04 f K      N/m                 4.8597E-02 F Edot   W 

4.5500  g Rm     N-s/m                 -5.8582  G WorkIn W 

0.6967  h |I|    A        G            16.817   H Volts  V 

  221.57    iPh(I)  deg      G             0.6967  I Amps   A 

                                          180.00    J Ph(V/I) deg 

                                         1.5742E+04 K |Px|   Pa 

ideal           Solid type                123.39    L Ph(Px) deg 

!--------------------------------- 11 --------------------------------- 

RPN        Linear alternator efficiency 

     0.0000 a G or T                    66.753                    A % 

10G 9F / -100 * 

!--------------------------------- 12 --------------------------------- 

RPN        Linear alternator stroke (Pk-Pk) 

     0.0000 a G or T                    2.3451E-03                A m 

10C 10a / w / 

!--------------------------------- 13 --------------------------------- 

RPN        angle between volt and current in linear alternator 

  180.00    a G or T          =13A      180.00                    A deg 

10J 

!--------------------------------- 14 --------------------------------- 

DUCT       Linear alternator enclosure volume 

 8.0000E-03 a Area   m^2                 8964.2     A |p|    Pa 

0.8600  bPerim  m                    172.58    B Ph(p)  deg 

0.1300  c Length m                   1.1596E-18 C |U|    m^3/s 

     0.0000 d Srough                     -135.47    D Ph(U)  deg 

                                         3.2038E-15 E Htot   W 

ideal           Solid type               3.2038E-15 F Edot   W 

!--------------------------------- 15 --------------------------------- 

HARDEND    Rigid termination 

     0.0000 a R(1/z)          =15G       8964.2     A |p|    Pa 
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     0.0000 b I(1/z)          =15H        172.58    B Ph(p)  deg 

                                         1.1596E-18 C |U|    m^3/s 

                                         -135.47    D Ph(U)  deg 

                                         3.2038E-15 E Htot   W 

                                         3.2038E-15 F Edot   W 

                                         4.1918E-17 G R(1/z) 

                                         5.3546E-17 H I(1/z) 

 

 

 

 

!--------------------------------- 16 --------------------------------- 

RPN        Overall Efficiency 

     0.0000 a G or T                    48.421                    A % 

10G 3G / -100 * 

! The restart information below was generated by a previous run 

! and will be used by DeltaEC the next time it opens this file. 

guessz   0b   0d   3h   3i  10h  10i 

xprecn  2.3355E-04  3.3854E-02  4.3399E-04 -4.0609E-03 -3.9771E-07  3.2610E-03 

targs    5a   6a   7a  13a  15a  15b 

mstr-slave 2 8 -2 9 -2 

! Plot start, end, and step values.  May be edited if you wish. 

! Outer Loop:                       | Inner Loop . 
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Appendix B - Guesses, Targets and Main Parameters in DeltaEC  

The DeltaEC code is based on some parameters to be guessed, some parameters to be 

targeted and some parameters to be only monitored by the user. The following table shows show 

all guesses, targets and other monitored parameters that have been used to reach the preliminary 

design of the built system.  

Guesses, targets and main parameters used in DeltaEC simulation 

tem No. Description Segment Type Value 

1 Frequency BEGIN Guess 50 Hz 

2 Dynamic pressure amplitude in AD enclosure  BEGIN Guess 8.9kPa 

3 Acoustic driver volt amplitude VESPEAKER Guess 31.37 V 

4 AD volt phase relative to AD enclosure 

dynamic pressure  

VESPEAKER Guess 127.1 ° 

5 Acoustic driver stroke amplitude RPN Target 2.33 mm 

6 Enforce resonance inside the resonator  RPN Target 0° 

7 Enforce desired pressure amplitude inside the 

resonator  

RPN Target 12 kPa 

8 Linear alternator current amplitude IESPEAKER Guess 0.69 A 

9 LA current phase relative to AD enclosure 

dynamic pressure  

IESPEAKER Guess 221.5° 

10 Angle between volt and current in linear 

alternator  

RPN Target 180° 

11 Impedance real part  HARDEND Target 0 

12 Impedance imaginary part  HARDEND Target 0 

13 Input electric power to acoustic driver  VESPEAKER -- 12.1 W 

14 Acoustic driver efficiency  RPN -- 72.6 % 

15 Resonator dynamic pressure amplitude RPN -- 11.9 kPa 

16 Output electric power from linear alternator  IESPEAKER -- 5.8 W 

17 Linear alternator efficiency  RPN -- 66.7 % 

18 Linear alternator stroke amplitude RPN -- 2.34 mm 

19 Overall conversion efficiency  RPN -- 48.4% 

  



www.manaraa.com
73 

 

Appendix C - Mechanical Drawings 
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Appendix D - Assembly of the Experimental Setup 

In this section the details of the assembly process of the experimental setup are explained  

1- The resonator under test, corresponding to the required front volume ahead of the linear 

alternator is used. Its internal surface is cleaned in house before use to remove dust (in 

addition to the polishing made during manufacturing). Figure I shows a digital image of 

the 5 cm resonator. 

  

Figure I: Left: the gas inlet port. Right: The pressure microphone port and 

how the resonator surface is flattened to provide proper sealing 

 

2- Acoustic driver is fixed on one side using eightM5 bolts in order to be well placed in its 

place. The same procedure is made for the linear alternator on the other side. Figure II 

shows the fixation of the acoustic driver and linear alternator on the resonator  

  

Figure II: Left: Acoustic driver fixed on the resonator. Right: Acoustic driver and 

linear alternator fixed on the resonator 

3- Then the enclosure volume of the acoustic driver and the linear alternator are assembled to 

the resonator using eight M10 bolts and nuts for each side (using antilock washers is 

recommended due to presence of vibration). Figure  shows the fixation of the two enclosure 

volumes. 
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Figure III: Right: Acoustic driver enclosure fixation. Right: Both enclosures are fixed 

4- The LVDT rod is fixed in the back of the piston as shown in Figure IV. 

5- The enclosure volume flange is then fixed at the back of each enclosure volume using eight 

M10 bolts and nuts with antilock washers. The system should be tested during the fixation 

of the flange to be sure that the LVDT probe is aligned and that the LVDT is reading zero 

displacement after fastening the bolts to avoid any zero error in the piston stroke 

measurement. The signal conditioner has a special screw that can be used to null the reading 

and is used for this purpose.  

6- The set of the mean pressure and vacuum gages and their flow control valves is installed 

at the proper port of the resonator. A digital image of the whole assembly is shown in 

Figure .   

 

Figure IV: System after assembling all its parts 
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Appendix E - Matlab Codes 

 

Main Data reading, manipulation and plotting code   
 

 

%%%%plot_external.m and psd_harmonics.m are two user defined functions needed 

to run this code 
%{  
This code takes excel sheets files found in folder as a input, it reads each 
file seperatley inlcuding all its tabs and does some data manipulation and 
outputs to another excel sheet (result file). The whole process goes on all 
the excel files found in the folder defined by directory then it plots the 
data with respect to 1st column in result excel or random range defined by 
the user 

  
inputs 
_______ 
1.direcory containing the excel sheets. 
2.flag to choose random range of data. 
3.Array contains the random values that will be inserted in the result 
excel sheet. 
4.the start value of the 1st column in the result excel sheet and x-axis of 
the plots. 
5.the end value of the 1st column in the result excel sheet and x-axis of 
the plots. 
6.the sensitivity of the LVDT in mm/volt 
7.the sensitivity if the pressure microphone in mV/kPa 
8.the gain of the signal amplifier 
9.flag to get PSD of multiple cycles signals that will override other data 
manipulation done on two cycles signals. 
10.the sampling rate in samples per second used in computing the PSD. 
11.ensemble average used in computing the PSD. 

  

  

  

  
All the raw data in the Excel Sheets are in Voltage 

  
outputs 
_______ 
1. result excel file contains all the data manipulation 
2. plots of the each columns starting from the second to the last one w.r.t 
the 1st column 
%} 

 
clear all  
close all 
clc 

  
prompt={'Enter the directory (should have all the .xlsx sheet which contains 

the excel file (ex: E:\Work\AUC\Experimental Data\2):',... 
        'Enter the name of the files before the variable',... 
        'Enter the unit of the variable',... 
        'Enter the LVDT Sensitivity in mm/Volt (ex: 1.25)',... 
        'Enter the Pressure Microphone Sensitivity in kPa/mV corresponding to 

the serial number of the microphone used (ex: 0.101)',... 
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        'Enter the gain of the signal conditioner amplifier (ex: 100)',... 
        'Enter 1 to calculate the acoustic power, PSD of the many cycles 

excel sheets and phase calculation (ex: [1,0,0])',... 
        'Enter Sampling rate in Samples per second (ex: 50000)',... 
        'Enter number of Ensemble Average for FFT (ex: 1 or 2)',... 
        'Enter Frequnecy at which the PSD figures will be calculated (ex: 

47Hz)' 
                }; 

  
name='Inputs'; 
numlines=1; % leaves one line empty in the blank space in the graphical user 

interface  
defaultanswer={'E:\Work\AUC\Experimental Data\Load Response @ 2 Vpp 54 

Hz','',' Hz Voc  two cycles 

5ms','1.25','0.103','100','[0,0,0]','2500','1','47'}; 
answer=inputdlg(prompt,name,numlines,defaultanswer); 

  

  
i=1; 
j=2; 

  

  
%this creates a matrix with number of rows equal to the length of the 
%frequency column and with 11 columns 
LVDT_sensitivity = str2num(answer{4}); 
MICRO_sensitivity = str2num(answer{5}); 
gain = str2num(answer{6}); 
flag_array = str2num(answer{7}); 
acoustic_power_flag = flag_array(1); 
FFT_flag = flag_array(2); 
phase_flag = flag_array(3); 
samprate = str2num(answer{8}); 
numens = str2num(answer{9}); 
PSD_freq = str2num(answer{10}); 

  

  
Folder=cd(answer{1}); 
folder_var1 = answer{2}; 
folder_var2 = answer{3}; 
% change the working directory to the directory where the files are placed 

  
d = dir('*.xlsx'); 
name = {d.name}; 
str = sprintf('%s#',name{:}); 
num = sscanf(str,strcat(folder_var1,'%f',folder_var2,'.xlsx#')); 
[sorted,index] = sort(num); 
d = d(index) 

  
freq_range = sorted'; 

  
output_array = zeros(length(freq_range),11); 

  
power_array = zeros(length(freq_range),2); 

  

  

  

  
e = actxserver ('Excel.Application'); 
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% opens a server to open excel application that is faster than xlsread 

  
for file_index = 1:length(d)     
    %% Extracting data from each excel file 
    sheet_names = {}; 
    excelworkbook = e.workbooks.Open(fullfile(Folder,d(file_index).name)); 

     
    sheet = excelworkbook.Sheets.Item(1); 
    range=sheet.UsedRange; 
    sheet_range = excelworkbook.Sheets.count; 
    time = cell2mat(range.value([9:end],1)); 

     
    for k =1:sheet_range 
        sheet_names{k} = excelworkbook.Sheets.Item(k).name; 
    end 

     
    for k=1:sheet_range 
        sheet = excelworkbook.Sheets.Item(k); 
        range=sheet.UsedRange; 
        if strcmp(sheet_names{k},'Middle pressure') || 

strcmp(sheet_names{k},'pressure')  
            pressure = cell2mat(range.value([9:end],2)); 
        end  
        if strcmp(sheet_names{k},'AD pressure') 
            AD_enc_pressure = cell2mat(range.value([9:end],2)); 
        end 
        if strcmp(sheet_names{k},'LA pressure') 
            LA_enc_pressure = cell2mat(range.value([9:end],2)); 
        end 
        if strcmp(sheet_names{k},'AD stroke') 
            AD_stroke = cell2mat(range.value([9:end],2)); 
        end 
        if strcmp(sheet_names{k},'AD current') 
            AD_current = cell2mat(range.value([9:end],2)); 
        end 
        if strcmp(sheet_names{k},'AD volt') 
            AD_volt = cell2mat(range.value([9:end],2)); 

             
        end 
        if strcmp(sheet_names{k},'LA stroke') 
            LA_stroke = cell2mat(range.value([9:end],2)); 
        end 
        if strcmp(sheet_names{k},'LA current') 
            LA_current = cell2mat(range.value([9:end],2)); 
        end 
        if strcmp(sheet_names{k},'LA volt') 
            LA_volt = cell2mat(range.value([9:end],2)); 
        end 

         
    end  

   

     
    excelworkbook.Close; 

     
    % 
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    %% Data Manipulation on each excel file 
    % compute the rms value of the voltage and current in Volt and Amperes, 
    % respectively  

     
    AD_volt_rms = sqrt(mean((AD_volt).^2));  
    AD_current_rms = sqrt(mean(AD_current.^2)); 
    LA_volt_rms = sqrt(mean(LA_volt.^2));  
    LA_current_rms = sqrt(mean(LA_current.^2)); 

     

     

     
    % compute the instanuos power in Watt 
    power_in = mean(AD_volt.*AD_current); 
    power_out = mean(LA_volt.*LA_current); 

     
    % compute the efficiecy 
    eff = (power_out/power_in)*100; 

     
    % compute peak to peak of stroke in mm  
    if ismember('AD stroke',sheet_names) == 1 
    pk2pk_stroke_in= (max(AD_stroke)-min(AD_stroke))*LVDT_sensitivity; 
    end 
    if ismember('LA stroke',sheet_names) == 1 
    pk2pk_stroke_out = (max(LA_stroke)-min(LA_stroke))*LVDT_sensitivity; 
    end 
    % compute pressure amplitude in kPa 
    %check units here pleaaaaase  
    if ismember('Middle pressure',sheet_names) == 1 || 

ismember('pressure',sheet_names) == 1 
    amp_pressure = ((max(pressure) - 

mean(pressure))*1000)/(gain*MICRO_sensitivity);   
    % where 100 gain of the signal amplifier and 1000 for unit conversion 
    end 

     
    if ismember('AD pressure',sheet_names) == 1 
        amp_AD_enc_pressure = ((max(AD_enc_pressure) - 

mean(AD_enc_pressure))*1000)/(gain*0.101); 
    end 
    if ismember('LA pressure',sheet_names) == 1 
        amp_LA_enc_pressure = ((max(LA_enc_pressure) - 

mean(LA_enc_pressure))*1000)/(gain*0.089); 
    end 
%      
%  

  
    %%  Getting Phase difference between pressure and strokes using 
    %  curve fitting (fourier Transform) 
    if phase_flag == 1 
        if ismember('AD pressure',sheet_names) == 1 
            B0 = mean(AD_enc_pressure);   
            B1 = (max(AD_enc_pressure) - min(AD_enc_pressure))/2;  
            B2 = 2*pi*freq_range(file_index);  
            B3 = 0;  

  
        %     fit_1 = NonLinearModel.fit(time,pressure, 'y ~ b0 + 

b1*sin(b2*x1 + b3)', [B0, B1, B2, B3]); 
            opt = 

fitoptions('Method','NonlinearLeastSquares','Startpoint',[B0,B1,B2,B3]); 
            f = fittype('p1 + p2*sin(p3*x + p4)','options',opt); 
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            fit_1 = fit(time,AD_enc_pressure,f); 
        end 

  
        Z0 = mean(LA_current);   
        Z1 = (max(LA_current) - min(LA_current))/2;  
        Z2 = 2*pi*freq_range(file_index);  
        Z3 = 0;  

  
    %     fit_2 = NonLinearModel.fit(time,LA_stroke, 'y ~ b0 + b1*sin(b2*x1 + 

b3)', [Z0, Z1, Z2, Z3]); 
        opt = 

fitoptions('Method','NonlinearLeastSquares','Startpoint',[Z0,Z1,Z2,Z3]); 
        f = fittype('p1 + p2*sin(p3*x + p4)','options',opt); 
        fit_2 = fit(time,LA_current,f); 

  
        Z0 = mean(LA_volt);   
        Z1 = (max(LA_volt) - min(LA_volt))/2;  
        Z2 = 2*pi*freq_range(file_index);  
        Z3 = 0;  

  
    %     fit_2 = NonLinearModel.fit(time,LA_stroke, 'y ~ b0 + b1*sin(b2*x1 + 

b3)', [Z0, Z1, Z2, Z3]); 
        opt = 

fitoptions('Method','NonlinearLeastSquares','Startpoint',[Z0,Z1,Z2,Z3]); 
        f = fittype('p1 + p2*sin(p3*x + p4)','options',opt); 
        fit_3 = fit(time,LA_volt,f); 

  
        K0 = mean(AD_volt);   
        K1 = (max(AD_volt) - min(AD_volt))/2;  
        K2 = 2*pi*freq_range(file_index);  
        K3 = 0;  

  
    %     fit_3 = NonLinearModel.fit(time,AD_stroke, 'y ~ b0 + b1*sin(b2*x1 + 

b3)', [K0, K1, K2, K3]); 

     
        opt = 

fitoptions('Method','NonlinearLeastSquares','Startpoint',[K0,K1,K2,K3]); 
        f = fittype('p1 + p2*sin(p3*x + p4)','options',opt); 
        fit_4 = fit(time,AD_volt,f); 

     
        K0 = mean(AD_current);   
        K1 = (max(AD_current) - min(AD_current))/2;  
        K2 = 2*pi*freq_range(file_index);  
        K3 = 0;  

  
    %     fit_3 = NonLinearModel.fit(time,AD_stroke, 'y ~ b0 + b1*sin(b2*x1 + 

b3)', [K0, K1, K2, K3]); 

     
        opt = 

fitoptions('Method','NonlinearLeastSquares','Startpoint',[K0,K1,K2,K3]); 
        f = fittype('p1 + p2*sin(p3*x + p4)','options',opt); 
        fit_5 = fit(time,AD_current,f); 

  

  
        if ismember('AD pressure',sheet_names) == 1 
             phase_1 = fit_1.p4; 
        end 
        phase_2 = fit_2.p4; 
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        phase_3 = fit_3.p4; 
        phase_4 = fit_4.p4; 
        phase_5 = fit_5.p4; 

     

     
        if ismember('AD pressure',sheet_names) == 1 
            phase_shift_Fitted_AD_volt_P = mod(abs(phase_1-phase_4),pi/2); 
            phase_shift_Fitted_LA_current_P = mod(abs(phase_1-phase_2),pi/2); 
        end 
        phase_shift_Fitted_LA_current_LA_volt = mod(abs(phase_2-

phase_3),pi/2); 
        phase_shift_Fitted_AD_current_AD_volt = mod(abs(phase_4-

phase_5),pi/2); 
    end 

  

  
    %% Acoustic Power Calculation using direct numerical integration on the 

strokes signals  
    if acoustic_power_flag == 1 
        LA_stroke_fitted = fit_external(time,((LA_stroke-

mean(LA_stroke))*LVDT_sensitivity)/1000,freq_range(file_index)); 
        AD_stroke_fitted = 

fit_external(time,AD_stroke*LVDT_sensitivity/1000,freq_range(file_index)); 
        pressure_fitted = 

fit_external(time,(pressure*1000*1000)/(gain*MICRO_sensitivity),freq_range(fi

le_index)); 
        for k = 1:length(LA_stroke_fitted) 
            if k == length(LA_stroke_fitted) 
                diff_LA_stroke(k) = (LA_stroke_fitted(k)-LA_stroke_fitted(k-

1))/((time(k)-time(k-1))); 
                diff_AD_stroke(k) = (AD_stroke_fitted(k)-AD_stroke_fitted(k-

1))/((time(k)-time(k-1))); 
            else  
                diff_LA_stroke(k) = (LA_stroke_fitted(k+1)-

LA_stroke_fitted(k))/((time(k+1)-time(k))); 
                diff_AD_stroke(k) = (AD_stroke_fitted(k+1)-

AD_stroke_fitted(k))/((time(k+1)-time(k))); 
            end 
        end  
        sprintf('Numerical Differentiation on the strokes signals') 
        LA_acoustic_power = 

mean(pressure_fitted.*diff_LA_stroke'*((pi/4)*(0.0508^2)))  % 0.0508 is the 

diameter of the linear alternator in m^2 
        AD_acoustic_power = 

mean(pressure_fitted.*diff_AD_stroke'*((pi/4)*(0.0508^2))) 
        % 0.0508 is the diameter of the linear alternator in m^2 
    end  

     
    %% Output the manipulated data to result excel file 
    output_array(i,:) = 

[freq_range(file_index),amp_pressure,pk2pk_stroke_in,pk2pk_stroke_out,AD_volt

_rms,AD_current_rms,power_in,LA_volt_rms,LA_current_rms,... 
        power_out,eff]; 
    xlswrite('result.xls',output_array(i,:),1,strcat('A',num2str(j))); 
    if acoustic_power_flag == 1 
        power_array(i,:) = 

[freq_range(file_index),AD_acoustic_power,LA_acoustic_power]; 
        

xlswrite('power_results.xls',power_array(i,:),1,strcat('A',num2str(j))); 
    end 
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    if phase_flag == 1 
        phase_array(i,:) = 

[freq_range(file_index),(phase_shift_Fitted_AD_volt_P*180)/pi,(phase_shift_Fi

tted_LA_current_P*180)/pi,... 
            

(phase_shift_Fitted_LA_current_LA_volt*180)/pi,(phase_shift_Fitted_AD_current

_AD_volt*180)/pi]; 
        

xlswrite('phase_result.xls',phase_array(i,:),1,strcat('A',num2str(j))); 
    end 

     
    if ismember('LA pressure',sheet_names) == 1 && ismember('AD 

pressure',sheet_names) == 1 
        AUX_array(i,:) = 

[freq_range(file_index),amp_AD_enc_pressure,amp_LA_enc_pressure]; 
    elseif ismember('AD pressure',sheet_names) == 1 
        AUX_array(i,:) = [freq_range(file_index),amp_AD_enc_pressure]; 
    elseif ismember('LA pressure',sheet_names) == 1 
        AUX_array(i,:) = [freq_range(file_index),amp_LA_enc_pressure]; 
    end 

         
    if ismember('LA pressure',sheet_names) == 1 || ismember('AD 

pressure',sheet_names) == 1 
        xlswrite('AUX_result.xls',AUX_array(i,:),1,strcat('A',num2str(j))); 
    end 

  
    i = i+1; 
    j = j+1;  
    % this output array is a matrix of 26 rows (each row for a frequency 
    % value starting from 45 and ending with 70) and 11 columns (each 
    % column for a data set, like one column for  LA_current_rms, one column 

for  LA_volt_rms 
    disp(strcat('Total files: ',num2str(length(d)),' Done: 

',num2str(file_index),' Remaining: ',num2str(length(d)-file_index))); 
    end 

  

  
e.Quit; 
e.delete; 

  
if FFT_flag == 0 
info_array = {'Frequency (Hz)','Dynamic Pressure Ampltitude (kPa)','Stroke AD 

pk-pk (mm)','Stroke LA pk-pk (mm)','AD Voltage rms (V)','AD Current rms 

(A)','Input Power (Watt)',... 
    'LA Voltage rms (V)','LA Current rms (A)','Output Power (Watt)','Eff 

(%)'}; 
xlswrite('result.xls',info_array,1,'A1'); 
if acoustic_power_flag == 1 
    info_array = {'Frequency (Hz)','Acoustic Power AD (watt)','Acoustic Power 

LA (watt)'}; 
    xlswrite('power_results.xls',info_array,1,'A1'); 
end 
if phase_flag == 1 
    info_array = {'Frequency (Hz)','Phase diff. P_AD_volt (deg)','Phase diff. 

P_LA_current (deg)',... 
        'Phase diff. LA_current_volt (deg)','Phase diff. AD_current_volt 

(deg)'}; 
    xlswrite('phase_result.xls',info_array,1,'A1'); 
end 
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if ismember('LA pressure',sheet_names) == 1 || ismember('AD 

pressure',sheet_names) == 1 
    info_array = {'Frequency (Hz)','AD enclosure pressure (kPa)','LA 

enclosure pressure (kPa)'}; 
    xlswrite('AUX_result.xls',info_array,1,'A1'); 
end 

  

  
%this writes the info at the top of the result.xls file 

  
%closing the server  

  

  

  
%% Time Domain Plots  

  
figure(1) 
plot_external(output_array(:,1),output_array(:,2)); 

  
for k = 3:11 
    figure(k-1) 
    plot_external(output_array(:,1),output_array(:,k)); 
end 

  

  
%% now you have finished plotting all time domain data using the user-defined 

function (subroutine) plot_external 
else  

     

  
figure(1) 
PSD_HARMONIC(LA_volt(:,PSD_freq),samprate,numens,'Current'); 
figure(2) 
PSD_HARMONIC(LA_current(:,PSD_freq),samprate,numens,'Current'); 
figure(3) 
PSD_HARMONIC(LA_stroke(:,PSD_freq),samprate,numens,'Current'); 
figure(4) 
PSD_HARMONIC(AD_volt(:,PSD_freq),samprate,numens,'Current'); 
figure(5) 
PSD_HARMONIC(AD_current(:,PSD_freq),samprate,numens,'Current'); 
figure(6) 
PSD_HARMONIC(AD_stroke(:,PSD_freq),samprate,numens,'Current'); 
figure(7) 
PSD_HARMONIC(pressure(:,PSD_freq),samprate,numens,'Current'); 

  

  
%% now you have finished plotting all frequency domain data using the user-

defined function (subroutine) psd_harmonic  
end 

 

  



www.manaraa.com
85 

 

PSD Harmonic 
 

 

%{ 
This function is used to plot the power sepectral denisty of 

multiple 
cycles signal (PSD) 
  
input 
1. 1D array contains the data to be converted into the frequency domain. 
2. sampling rate in sample per second. 
3. number of ensemble average. 
4. string to be compared with 'Current' or otherwise voltage. 

  
output 
one figure contains two plots the top contains the PSD and the other 
contains the location of harmonics. 

  
%} 

  

  
function PSD_HARMONIC(data,samprate,numens,title_var) 

  
samples = length(data); 
delta = 1/samprate; 
nyq_freq = samprate/2; 
reclength = samples/samprate; 
avg = mean(data); 
stddev = std(data); 
bndwdth = 1/(reclength); 

  
disp(' ') 
disp(strcat('The mean of the data is ',num2str(avg),'.')); 
disp(strcat('The standard deviation of the data is ',num2str(stddev),'.')); 
disp(strcat('The effective bandwith is ',num2str(bndwdth),'.')); 
disp(' ') 

  

  
%%%% Data Standardization %%%% 

  
x = data - avg; 

  

     
%%%% Autospectrum Estimate %%%% 

  
% % % % % numens = input('Enter the number of ensembles to average. '); 

  
N = 2^floor(log2(samples/numens)); 

  
% 'N' is the number of points per ensemble. 
% It is coerced to be power of 2 

  

  
nd = floor(samples/N); 
disp('For efficiency (i.e. power of 2 algorithm),') 
disp(['the actual number of ensembles is ',num2str(nd),'.']) 
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disp(' ') 
% 'nd' is the number of ensembles based on 
% 'N' and total samples 

  
q = 0.5; 

  
% 'q' is the overlap parameter. Overlapping 
% is done to minimize random error induced 
% by Hanning tapering 

  
ilng = nd/q; 
j = (1:1:ilng); 
T = N*delta; 
frqres = 1/T; 
rnderr = 1/(nd)^(1/2); 

  
autoout1=['The frequency resolution is approximately ',num2str(frqres),' 

Hz.']; 
autoout2=['The random error is about ',num2str(rnderr),'.']; 

  
disp(' '); 
disp(autoout1); 
disp(autoout2); 

  

  
for count = 1:nd/q-1 
    specmat(:,count) = x(q*(count-1)*N+1:(q*(count-1)+1)*N); 
end 
%% 
% apply Hanning window 

  
t = (0:delta:T-delta)'; 
hann = 1 - (cos(t*pi/T)).^2; 

  
clear count 

  
for count = 1:nd/q-1 
    specdata(:,count) = specmat(:,count).*hann; 
end 

  
specint = abs(delta*(8/3)^(1/2)*fft(specdata)); 

  
specest = 2/(N*nd*delta)*sum(specint.^2,2); 

  
k = (0:1:N/2)'; 

  
fk = k/(N*delta); 

  

  
% Strouhal No. scaling using user input 
% characteristic length and freestream velocity 

  
disp(' ') 
disp(' ') 
% % % % % % disp('Would you like to scale the frequency axis using') 
% % % stquery = input('Strouhal No. ("Y" for yes)? ','s'); 
stquery= 'N'; 
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disp(' ') 

  

  
srtspecf = sortrows([fk(2:N/2+1)';specest(2:N/2+1)']',2); 

  

  
%% 

  
subplot(2,1,1) 

  
semilogy(fk, specest(1:N/2+1),'-ks','linewidth',1,'MarkerSize',3); 
axis([0 max(fk) 0 max(specest(1:N/2+1))]); 
title('\bf Power Spectral Desnisty','fontsize',15,'color','k') 
xlabel('\bf Frequency, Hz','fontsize',15,'color','k'); 
%axis auto 

  
if strcmp (title_var,'Current') 
    ylabel('\bf Spec. Density, A^2/s','fontsize',15,'color','k'); 
else 
    ylabel('\bf Spec. Density, V^2/s','fontsize',15,'color','k'); 
end 
grid on 
set(gca,'gridlinestyle','-') 
set(gca,'fontsize',12); 
set(gca,'linewidth',2); 
if strcmp (title_var,'Current') 
    set(gca,'YTick',[1E-9 1E-7, 1E-5,1E-3,1E-1,1E1,1E3])%{,1E3,1E4,1E5]) 
    axis ([0 samprate/2  1E-9  1E3]) 
else 
    set(gca,'YTick',[1E-9,1E-7,1E-5,1E-3,1E-1,1E1,1E3,1E5]) 
    axis ([0 samprate/2  1E-9  1E5]) 
end 

  
subplot(2,1,2) 
axis([0 1 -0.4 1]) 
text(0.33,7/8,'\bf Max. Autospectral Density 

Location','fontsize',15,'color','k') 
text(0.25,5/8,['1) ',num2str(srtspecf(N/2,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.25,3/8,['2) ',num2str(srtspecf(N/2-1,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.25,1/8,['3) ',num2str(srtspecf(N/2-2,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.5,5/8,['4) ',num2str(srtspecf(N/2-3,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.5,3/8,['5) ',num2str(srtspecf(N/2-4,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.5,1/8,['6) ',num2str(srtspecf(N/2-5,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.75,5/8,['7) ',num2str(srtspecf(N/2-6,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.75,3/8,['8) ',num2str(srtspecf(N/2-7,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.75,1/8,['9) ',num2str(srtspecf(N/2-8,1)),' 

Hz'],'fontsize',15,'color','k') 
text(0.33,(-0.25/2),['Frequency Resolution = ',num2str(frqres),' 

Hz'],'fontsize',15,'color','k') 
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end 

 
 

Plot External  
 

function plot_external(x_data,y_data) 
prompt={'Enter plot type (L for Linear,SX for semilogx,SY for semilogy and LL 

for loglog):',... 
        'Enter plot color and format:',... 
        'Enter title:',... 
        'Enter title''s fontsize:',... 
        'Enter xlabel:' ,... 
        'Enter xlabel''s fontsize:',... 
        'Enter ylabel:',... 
        'Enter ylabel''s fontsize:',... 
        'Enter axes''s fontsize and linewidth:',... 
        'Enter 1 to enable grid:',... 
        'Enter plot''s linewidth and markersize:',... 
        'Enter 1 for multiple plots' 
        }; 

         

  
name='Plot Parameters'; 
numlines=1; 
%====== used in subplotting =============% 
% defaultanswer={'L','k-','Title example','15','Xlabel 

example,s','15','Ylabel example, A_r_m_s','15','[12,2]','1','[1,3]'}; 
%====== used in normal plotting ============% 
defaultanswer={'L','k-','','24','Frequency, 

Hz','30','','30','[24,2]','1','[4,10]','0'}; 

  
answer=inputdlg(prompt,name,numlines,defaultanswer); 

  
size_y_data = size(y_data); 

  
plot_color = ['b','r','k','c','m','y','g'];  

  
if strcmp(answer{1},'L')  
    if str2num(answer{12}) == 1 
        p = plot(x_data,y_data)             
    else 
        p = plot(x_data,y_data,answer{2}); 
    end 
elseif strcmp(answer{1},'SX') 
    if str2num(answer{12}) == 1  
        p = semilogx(x_data,y_data)           
    else 
        p = semilogx(x_data,y_data,answer{2}); 
    end 
elseif strcmp(answer{1},'SY') 
    if str2num(answer{12}) == 1  
       p = semilogy(x_data,y_data)               
    else 
       p = semilogy(x_data,y_data,answer{2}); 
    end 
elseif strcmp(answer{1},'LL') 
    if str2num(answer{12}) == 1  
        p = loglog(x_data,y_data)                 
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    else 
        p = loglog(x_data,y_data,answer{2}); 
    end 
end 

  
title(strcat('\bf',answer{3}),'fontsize',str2num(answer{4}),'color','k'); 
xlabel(strcat('\bf',answer{5}),'fontsize',str2num(answer{6}),'color','k'); 
ylabel(strcat('\bf',answer{7}),'fontsize',str2num(answer{8}),'color','k'); 

  
axis_temp = str2num(answer{9}); 
set(gca,'fontsize',axis_temp(1)); 
set(gca,'linewidth',axis_temp(2)); 
set(gca,'FontWeight','bold'); 

  
if strcmp(answer{10},'1') 
    grid on 
    set(gca,'gridlinestyle','-') 
end 

  

  
plot_temp = str2num(answer{11}); 
if str2num(answer{12}) == 1  
    set(p,'linewidth',plot_temp(1)); 
    set(p,'markersize',plot_temp(2)); 
else 
    set(p,'linewidth',plot_temp(1)); 
    set(p,'markersize',plot_temp(2)); 
end 

     

  
end 
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Fit External  

 
 
%{ 
This function is used to fit a sinsuidial data to its 18th harmonic using 
optimization toolbox in matlab 

  
it uses an external function fit_simple18 

  

  
inputs 
1.two 1 dimensional array containing X,Y data to be fitted 
2.initial frequency used as initial guess for the fundamental frequency. 

  
output 
array containing the fitted data. 

  
%} 

  
function Y_new = fit_external(x_data,y_data,freq) 
T = x_data; 
Y = y_data; %Y is the data of the variable (micrphone pressure) used in 

fitting 

  

  

  
% Initial solution: X0=[ 9 amplitudes , 9 angles in dgrees, fundemental 

frequency ] 
X0=[500 400 300 50 50 50 50 50 25   0 20 30 0 20 30 0 20 30 freq]'; 

  
% Lower limits: lb=[ 9 amplitudes , 9 angles in dgrees, minimum expected 

fundemental frequency ] 
lb = [0 0 0 0 0 0 0 0 0   -360  -360  -360  -360  -360  -360  -360 -360 -360  

freq-10 ]'; 

  
% Upper limits: ub=[ 9 amplitudes , 9 angles in dgrees, maximum expected 

fundemental frequency ] 
ub = [1000000 1000000  1000000 1000000 1000000 1000000 1000000 1000000 

1000000 360  360 360 360 360 360 360 360 360 freq+10]'; 

  
% Set an options file for LSQNONLIN to use the  medium-scale algorithm  
options = optimset('algorithm','trust-region-reflective','TolX', 1e-

15,'TolFun',1e-15,'display','on'); 

  
% Calculate the new coefficients using LSQNONLIN. 
[x,resnorm,residual,exitflag,output]=lsqnonlin(@fit_simp18,X0,lb,ub,options,T

,Y); 

  

  
% Plot the original and experimental data. 
fund = x(19); 

  

  
Y_new = 

x(1).*sin(2*pi*fund.*T+x(10)*pi/180)+x(2).*sin(4*pi*fund.*T+x(11)*pi/180)+x(3

).*sin(6*pi*fund.*T+x(12)*pi/180)+x(4).*sin(8*pi*fund.*T+x(13)*pi/180)+x(5).*

sin(10*pi*fund.*T+x(14)*pi/180)+x(6).*sin(12*pi*fund.*T+x(15)*pi/180)+x(7).*s
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in(14*pi*fund.*T+x(16)*pi/180)+x(8).*sin(16*pi*fund.*T+x(17)*pi/180)+x(9).*si

n(18*pi*fund.*T+x(18)*pi/180); 

  

  
end 
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Fit Simple 18 

 
%{ 
This function is called by lsqnonlin. 
x is a vector which contains the coefficients of the 
equation.  X and Y are the option data sets that were 
passed to lsqnonlin. 

  
%} 

  

  
function diff = fit_simp18(x,X,Y) 

  

  

  
A=x(1); 
B=x(2); 
C=x(3); 
D=x(4); 
E=x(5); 
F=x(6); 
G=x(7); 
H=x(8); 
I=x(9); 

  
fund = x(19); 

  
Phi1=x(10); 
Phi2=x(11); 
Phi3=x(12); 
Phi4=x(13); 
Phi5=x(14); 
Phi6=x(15); 
Phi7=x(16); 
Phi8=x(17); 
Phi9=x(18); 

  
diff = 

A.*sin(2*pi*fund.*X+Phi1*pi/180)+B.*sin(4*pi*fund.*X+Phi2*pi/180)+C.*sin(6*pi

*fund.*X+Phi3*pi/180)+D.*sin(8*pi*fund.*X+Phi4*pi/180)+E.*sin(10*pi*fund.*X+P

hi5*pi/180)+F.*sin(12*pi*fund.*X+Phi6*pi/180)+G.*sin(14*pi*fund.*X+Phi7*pi/18

0)+H.*sin(16*pi*fund.*X+Phi8*pi/180)+I.*sin(18*pi*fund.*X+Phi9*pi/180)- Y; 

  
end 
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Appendix F - Stroke Control Circuit 

Item 

No. 

Item 

designator 

Component 

name 

Description and purpose Main specs 

Power supply circuit 

2 P5 Terminal 

block  

(Rosette) for input of 220 V AC input  Withstand the current 

and voltage passing 

through it  

1 S3 On/Off 

switch 

ON/Off for 220 V power supply  Power switch 

Single-Pole, Single-

Throw Switch. Must 

withstand the current 

and voltage passing 

through it  

27 F1 Input Fuse  Protection against excessive current  100 mA 

26 R16 Transient 

voltage 

suppressor  

Varistor 

(Voltage-

Sensitive 

Resistor) 

If the applied voltage exceeds the 

rated voltage (240V), its resistance 

drops significantly causing excessive 

current withdrawal causing the fuse to 

blow and thus protects the circuit 

against over-voltage  

Rated voltage 240 V.  

Part number 14N391K 

3 T1 Transformer  Step-down transformer to decrease 

input AC voltage from 220 V to 12 V 

220 Vinput/12 Volt 

output 

 1 A   

23 D10, D12, 

D13 AND 

D14  

Diodes  

(Qty =4) 

Full-wave rectifier  

(convert AC to DC) 

General purpose 

diode.  

Part number 1N4007  

25 C5 Capacitor  Power supply filter (smoothing 

capacitor) to Remove ripples from 

rectifier output 

1000 µF  
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4 VR1 Voltage 

regulator  

Regulates the output voltage to 12 V  12V output voltage 

(DC) and 1 A current 

limit. Part number 

LM7812.  

8 C6 capacitor Required for fast response of voltage 

regulator  

0.1 µF 

5 D11 LED Visual indicator for power ON  

7 R15 Resistance  Provides current limit  

for the LED D11  

1kΩ 

Now you have 12 VDC power input to OP Amps 
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Precision rectifier circuit 

Item 

No. 

Item 

designator 

Component 

name 

Description and purpose Main specs 

24 P1 Terminal 

block 

Input of LA  LVDT signal Withstand the current and 

voltage passing through it  

10 & 

21 

5&16 Precision 

rectifier 

Qty = 2 (one 

for AC & 

one for LA) 

Rectification of LVDT 

signal 

LM324 (uses two op-amps 

inside LM324AN).  

General purpose op-amp 

22 R1, R3 and 

R4 

Resistances 

(Qty =3)  

Required for LM324 

precision rectifier circuit  

Equal resistance of the three 

resistances – Large 

resistance values are needed 

because they will not 

withdraw large current from 

the supply  

28 D2&D4 Diodes 

(Qty = 2) 

Diode, part of the precision 

rectifier circuit  

General purpose diode 

1N4007  

29 D4 & D8 Diodes 

(Qty = 2) 

Diode, part of the precision 

rectifier circuit 

General purpose diode 

1N4007 

30 - LED Linear alternator over-

stroke LED  

Typical INFRARED GaAs 

LED, 0.5 mm 

Built into the normally open 

solid-state relay 
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 Comparator and Latching circuit 

Item 

No. 

Item 

designator 

Component 

name 

Description and purpose  Main specs 

21 U1 Analog 

comparator 

LM324AN 

Compares the measured LVDT 

voltage to the set point  

 

22 R5 Resistance 100 k  Part of the latching circuit   

28 D2 Diode  Part of the latching circuit   

11 & 

18 

S1(LA) & 

S2 (AD) 

On/off switch Latching reset  General 

purpose 

Single-Pole, 

Single-Throw 

Switch 

19 R7 Potentiometer  Potentiometer for the set point of the 

over-stroke voltage  

Multi-turn for 

high resolution 

setting of set 

voltage, 10 kΩ 

20 C1 Capacitor Power supply noise filter (Between 

Vcc and ground of potentiometer) 

47 µF or 

higher  

- C2 0.1 µF capacitor Decoupling capacitor for the op-amp 

LM324AN of the alternator (U1) 

0.1 µF ceramic 

capacitor, Low 

equivalent 

series 

resistance 

(ESR)  

- C4 0.1 µF capacitor Decoupling capacitor for the op-amp 

LM324AN of the driver (U2) 

0.1 µF ceramic 

capacitor. Low 

equivalent 

series 

resistance 

(ESR)  
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Control action taken based on comparator output in the alternator 

 

Item 

No. 

Item 

designator 

Component 

name 

Description and purpose  Main specs 

17 K2 Normally-open 

Solid-state 

relay 

To introduce stall circuit in 

parallel to the alternator to 

avoid over-stroking  

Normally-open  

Proper power rating  

14 R6 2.2 Ω 100-W 

resistance  

This is the stall circuit  Low resistance, large 

power resistance  

16 P2 Terminal block  To connect to the alternator   
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Control action taken based on comparator output in the Driver 

Same as above except using normally-closed solid state relay rather than normally-open 

solid state relay plus use of OR gate  

 

Item 

No. 

Item 

designator 

Component 

name 

Description and purpose  Main specs 

12 D7 and D9 Diodes 

(Qty =2) 

Together they make an OR 

gate  

General purpose diode 

1N4007 

 

13 K1 Solid-State 

Relay 

Normally closed to 

disconnect the driver power 

in case of overstroke. 

125VAC @ 10A 

9 & 

22 

Several Resistors Part of the precision rectifier 

and latching circuits. 

¼ W 

6 P4 Terminal 

block 

Acoustic driver LVDT input 

Header, 2-Pin 

220V @ 10A 

15 P3 Terminal 

block 

Driver disconnect terminals  

Header, 2-Pin 

220V @ 10A 
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